[1] 李一凡. 高速铁路周界入侵报警系统关键技术研究及应用[J]. 铁道通信信号, 2017, 53(7): 53-55, 85. [LI Y F. Study and application of key technologies of perimeter intrusion alarming system for high speed railway[J]. Railway Signalling & Communication, 2017, 53(7): 53-55, 85.]
[2] 关晟. 高速铁路周界防护技术研究[J]. 高速铁路技术, 2015, 6(2): 63-67. [GUAN S. Technology research on perimeter protection on high-speed railway[J]. High Speed Railway Technology, 2015, 6(2): 63-67.]
[3] CATALANO A, BRUNO F, PISCO M, et al. An intrusion detection system for the protection of railway assets using fiber bragg grating sensors[J]. Sensors, 2014, 14 (10): 18268-18285.
[4] 牛宏侠, 张肇鑫, 宁正, 等. 铁路轨道异物完整性检测与跟踪算法研究[J]. 交通运输系统工程与信息, 2019, 19(1): 45-54. [NIU H X, ZHANG Z X, NING Z, et al. Detection and tracking algorithm of foreign integrity in railway tracks[J]. Journal of Transportation System Engineering and Information Technology, 2019, 19(1): 45-54.]
[5] 李荣增. 基于视频识别的铁路入侵检测研究与实现 [D]. 武汉: 武汉理工大学, 2016. [LI R Z. Research and implementation of railway intrusion detection based on video recognition[D]. Wuhan: Wuhan University of Technology, 2016]
[6] BILODEAU G A, JODOIN J P, SAUNIER N. 2013 international conference on computer and robot visionchange detection in feature space using local binary similarity patterns[C]// International Conference on Computer & Robot Vision, IEEE Computer Society, 2013: 106-112.
[7] ST-CHARLES P L, BILODEAU G A, BERGEVIN R. A self- adjusting approach to change detection based on background word consensus[C]// 2015 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE Computer Society, 2015: 990-997.
[8] ST-CHARLES P L, BILODEAU G A, BERGEVIN R. SuBSENSE: A universal change detection method with local adaptive sensitivity[J]. IEEE Transactions on Image Processing, 2014, 24(1): 359-373.
[9] CHEN K, PANG J, WANG J, et al. Hybrid task cascade for instance segmentation[J]. 2019, arXiv: 1901.07518.
[10] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Computer Society, 2017: 2117-2125.
[11] CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[J]. 2017, arXiv:1706.05587.
[12] ANG L L, HACER Y K. Foreground segmentation using convolutional neural networks for multiscale feature encoding[J]. Pattern Recognition Letters, 2018(112): 256-262.
[13] WANG Y, LUO Z, JODOIN P M. Interactive deep learning method for segmenting moving objects[J]. Pattern Recognition Letters, 2016(96): 66-75.
[14] LONG A L, KELES H Y. Learning multi-scale features for foreground segmentation[J]. 2018, arXiv:1808.01477. |