[1] 杨文臣, 张轮, ZHU FENG. 多智能体强化学习在城市交通网络信号控制方法中的应用综述[J]. 计算机应用研究, 2018, 35(6): 1613-1618. [YANG W C, ZHANG L, ZHU F. Multi- agent reinforcement learning based traffic signal control for integrated urban network: survey of state of art[J]. Application Research of Computers, 2018, 35(6): 1613-1618.]
[2] THORPE T. Vehicle traffic light control using SARSA [R]. Colorado: Colorado State University, 1997.
[3] ABDULHAI B, KARAKOULAS G J, PRINGLE R. Reinforcement learning for true adaptive traffic signal control[J]. Journal of Transportation Engineering, 2003, 129(3): 278-285.
[4] BALAJI P G, GERMAN X, SRINIVASAN D. Urban traffic signal control using reinforcement learning agents [J]. IET Intelligent Transport Systems, 2010, 4(3): 177- 188
[5] ZHU F, AZIZ H M A, QIAN X, et al. A junction-tree based learning algorithm to optimize network wide traffic control: A coordinated multi-agent framework[J]. Transportation Research Part C: Emerging Technologies, 2015(58): 487-501.
[6] FUDENBERG D, TIROLE J. Game theory[M]. Cambridge: MIT Press. 1991.
[7] 蔡云, 杨晓光, 王浩. 一种灵活的在线交通信号相位切换结构[J]. 城市交通, 2009, 7(3): 80- 85. [CAI Y, YANG X G, WANG H. A Flexible on- line transition structure of traffic signal phases[J]. Urban Transport of China, 2009, 7(3): 80-85.] |