交通运输系统工程与信息 ›› 2020, Vol. 20 ›› Issue (3): 103-110.

• 系统工程理论与方法 • 上一篇    下一篇

考虑客流空间分布的地铁列车节能时刻表优化方法

冉昕晨1,陈绍宽* 1,陈磊1,贾文峥2   

  1. 1. 北京交通大学交通运输部综合交通运输大数据应用技术交通运输行业重点实验室,北京 100044; 2. 交通运输部科学研究院城市交通研究中心,北京 100029
  • 收稿日期:2020-01-06 修回日期:2020-03-06 出版日期:2020-06-25 发布日期:2020-06-28
  • 作者简介:冉昕晨(1994-),女,重庆合川人,博士生.
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China(71571015,71621001).

An Energy-efficient Timetable Optimization Method for Metro Operation Considering Spatial Distribution of Passenger Flow

RAN Xin-chen1, CHEN Shao-kuan1, CHEN Lei1, JIAWen-zheng2   

  1. 1. MOT Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China; 2. China Urban Sustainable Transport Research Center, China Academy of Transportation Sciences, Beijing 100029, China
  • Received:2020-01-06 Revised:2020-03-06 Online:2020-06-25 Published:2020-06-28

摘要:

客流变化引起的列车质量变化是影响地铁列车能耗与节能运行的重要因素之一. 本文考虑地铁线路客流空间分布差异,研究耗散型再生制动能利用方式下的列车节能时刻表优化方法. 结合各区间载荷差异和列车运动方程,建立以净能耗最小为目标的时刻表优化模型,通过适度优化计划停站时间、区间运行时间和折返时间协同多列车牵引、巡航、惰行和制动过程的时空分布,设计二分法和粒子群算法对模型求解. 以北京地铁某线路进行实例研究,结果表明,优化模型能有效协同多列车的节能运行,考虑客流空间分布差异比假定列车载荷为常数能进一步提升节能效果.

关键词: 城市交通, 列车节能协同, 粒子群算法, 时刻表, 客流

Abstract:

Section passenger variation is a key factor to change the weight of metro trains which can affect their energy consumption and energy-efficient operation. An energy-efficient timetable optimization method incorporated with an unbalance spatial distribution of passenger flow is proposed for metro train operation under the dissipative regenerative braking mode. Based on the load variation and train motion equation, a timetable optimization model aiming at minimizing the net energy consumption is established to coordinate the temporal and spatial distribution of traction, cruising, coasting, and braking trains by adjusting their planned running times, dwell times, and turnaround times in a modest range. The dichotomy and particle swarm optimization algorithms are designed to solve the proposed model. The results from a case study based on one metro lines in Beijing show that the proposed method could effectively coordinate the energy-efficient operation of multiple trains. Besides, by considering the variation of section passenger flow, the timetable optimization model can further improve the energy-saving performance compared with the scheme that assumes the train load is constant.

Key words: urban traffic, energy-efficient train coordination, particle swarm algorithm, timetable, passenger flow

中图分类号: