[1] QUIROS A R F, BEDRUZ R A, UY A C, et al. Machine vision of traffic state estimation using fuzzy logic[C]// IEEE Region 10th Conference, Marina Bay Sands, Singapore, 2016: 2104-2109.
[2] 崔华, 袁超, 魏泽发, 等. 利用FCM对静态图像进行交通状态识别[J]. 西安电子科技大学学报, 2017(6): 85- 90. [CUI H, YUAN C, WEI Z F, et al. Traffic state recognition using state images and FCM[J]. Journal of Xidian University, 2017(6): 85-90.]
[3] JI S, XU W, YANG M, et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 221-231.
[4] TRAN D, WANG H, TORRESANI L, et al. A closer look at spatiotemporal convolutions for action recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, America, 2018: 6450-6459.
[5] 王明哲, 郭敏. 北京市典型道路交通运行状态分析及预测研究[J]. 交通运输系统工程与信息, 2013,13(2): 191-198. [WANG M Z, GUO M. Traffic state forecasting of typical roads in Beijing[J]. Journal of Transportation Systems Engineering and Information Technology, 2013, 13(2): 191-198.]
[6] SUN Z, LI Z, ZHAO Y. Traffic congestion forecasting based on possibility theory[J]. International Journal of Intelligent Transportation Systems Research, 2016, 14 (2): 85-91.
[7] XU D W, WANG Y D, JIA L M. Real-time road traffic state prediction based on ARIMA and Kalman filter[J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18(2): 287-302.
[8] HUANG Z, XIA J, LI F, et al. A peak traffic congestion prediction method based on bus driving time[J]. Entropy, 2019, 21(7): 709.
[9] 彭博, 蔡晓禹, 唐聚, 等. 基于形态检测与深度学习的高空视频车辆识别[J]. 交通运输系统工程与信息, 2019,19(6): 45-51. [PENG B, CAI X Y, TANG J, et al. Morphous detection and deep learning based approach of vehicle recognition in aerial videos[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(6): 45-51.]
[10] CHENG H, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]. Conference on Recommender Systems, New York, America, 2016: 7- 10. |