[1] 陆化普, 孙智源, 屈闻聪. 大数据及其在城市智能交通系统中的应用综述[J]. 交通运输系统工程与信息,2015, 15(5): 45- 52. [LU H P, SUN Z Y, QU W C.Bigdata and its applications in urban intelligent transportation system[J]. Journal of Transportation Systems Engineering and Information Technology, 2015,15(5): 45-52.]
[2] AHMED M S, COOK A R. Analysis of freeway traffic time- series data by using box- jenkins techniques[M]. Transportation Research Board, Washington DC, United States, 1979.
[3] WU C H, HO J M, LEE D T. Travel-time prediction with support vector regression[J]. IEEE Transactions on Intelligent Transportation Systems, 2004, 5(4): 276-281.
[4] CHENG S, LU F, PENG P, et al. Short- term traffic forecasting: An adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71: 186-198.
[5] DU L, PEETA S, KIM Y H. An adaptive information fusion model to predict the short-term link travel time distribution in dynamic traffic networks[J]. Transportation Research Part B: Methodological, 2012,46(1): 235-252.
[6] MA X, YU H, WANG Y, et al. Large- scale transportation network congestion evolution prediction using deep learning theory[J]. PloS One, 2015, 10(3),e0119044.
[7] YU R, LI Y, SHAHABI C, et al. Deep learning: A generic approach for extreme condition traffic forecasting [C]. Proceedings of the 2017 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, Houston, United States, 2017:777-785.
[8] SUN S, HUANG R, GAO Y. Network- scale traffic modeling and forecasting with graphical lasso and neural networks[J]. Journal of Transportation Engineering, 2012, 138(11): 1358-1367.
[9] YU H, WU Z, WANG S, et al. Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks[J]. Sensors, 2017, 17(7):1501.
[10] LI Y, YU R, SHAHABI C, et al. Graph convolutional recurrent neural network: Data-driven traffic forecasting[C]. In the 6th International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, April 30 - May 3, 2018.
[11] ZHANG Z, LI M, LIN X, et al. Multistep speed prediction on traffic networks: A deep learning approach considering spatio- temporal dependencies[J]. Transportation Research Part C: Emerging Technologies, 2019, 105: 297-322.
[12] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]. In the 5th International Conference on Learning Representations (ICLR), Toulon, France, April 24-26, 2017.
[13] ZHOU L, ZHANG S, YU J, et al. Spatial-temporal deep tensor neural networks for large- scale urban network speed prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019. DOI: 10.1109/TITS.2019.2932038. |