交通运输系统工程与信息 ›› 2020, Vol. 20 ›› Issue (6): 9-21.
关伟a,吴建军b,高自友*a
收稿日期:
2020-08-28
修回日期:
2020-09-25
出版日期:
2020-12-25
发布日期:
2020-12-25
作者简介:
关伟(1968-),男,安徽人,教授.
基金资助:
国家自然科学基金创新群体项目/National Natural Science Foundation of China(71621001).
GUAN Weia, WU Jian-junb, GAO Zi-youa
Received:
2020-08-28
Revised:
2020-09-25
Online:
2020-12-25
Published:
2020-12-25
摘要:
网络化是交通运输系统的自然属性,交通基础设施建设与管理、系统的运营与服务,以及相关配套的政策与管理体制对于系统网络化都有内在需求.本文首先给出了交通运输网络系统工程的定义,并从交通运输网络系统工程中存在的科学问题及未来展望两个角度开展了详细论述.从交通运输系统复杂网络分析、交通运输系统网络化组织运营管理和城市交通系统网络化控制与诱导三个方面介绍了国内外研究与工程实践的最新现状,归纳总结了其中存在且迫切需要解决的科学问题.交通运输系统复杂网络分析的关键科学问题是探索不同交通运输网络拓扑结构与交通动力学时空演化规律、网络承载力、可靠性之间的动态耦合及匹配关系.交通运输系统网络化组织运营管理的关键科学问题是在交通基础设施物理结构为复杂网络的条件下,具有目标异性的多博弈主体(政府、运营企业、乘客等)之间如何实现利益平衡或达到帕累托最优.对于交通运输网络系统工程的未来发展,本文认为重点需要加强对综合交通运输网络系统工程的理论与方法论体系的研究,围绕“综合交通网络的构造演化机理”“城市交通网络供需平衡机理”“多层综合交通网络结构复杂特性及其动力学过程”“出行行为的多样性及可预测性”等问题进行探索.此外,由于新技术环境下的交通系统将出现颠覆性的变革,交通网络运输系统工程的内涵和外延也需要进行根本性的升级改造.具有自驱动、自组织、自决策能力节点的柔性交通运输网络及其共享运行机制,将会是交通运输网络系统工程未来的一个重要研究领域.
中图分类号:
关伟,吴建军,高自友. 交通运输网络系统工程[J]. 交通运输系统工程与信息, 2020, 20(6): 9-21.
GUAN Wei, WU Jian-jun, GAO Zi-you. Transportation Network Systems Engineering[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 9-21.
[1] 四兵锋, 高自友. 交通运输网络流量分析与优化建模 [M]. 北京: 人民交通出版社, 2013. [SI B F, GAO Z Y. Modeling network flow and system optimization for traffic and transportation system[M]. Beijing: China Communication Press, 2013.] [2] 交通科学编委会. 10000 个科学难题:交通运输科学卷[M]. 北京: 科学出版社, 2018. [Editorial Board of Transportation Science. 10000 scientific problems: volume of transportation science[M]. Beijing: Science Press, 2018.] [3] GALLOTTI R, PORTER M A, BARTHELEMY M. Lost in transportation: Information measures and cognitive limits in multilayer navigation[J]. Science Advances, 2016, 2(2): e1500445. [4] 王浣尘. 交通网络化与信息网络化之整合[J]. 交通运输系统工程与信息, 2001, 10(1): 81-83. [WANG H C. The integration of communications networkization and information networkization[J]. Journal of Transportation Systems Engineering and Information Technology, 2001, 10(1): 81-83.] [5] 高自友, 赵小梅, 黄海军, 等. 复杂网络理论与城市交通系统复杂性问题的相关研究[J]. 交通运输系统工程与 信 息, 2006, 6(3): 41- 47. [GAO Z Y, ZHAO X M, HUANG H J, et al. Research on problems related to complex networks and urban traffic systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2006, 6(3): 41-47.] [6] CRUCITTI P, LATORA V, PORTA S. Centrality measures in spatial networks of urban streets[J]. Physical Review E, 2006, 73(3): 036125. [7] 高自友, 龙建成, 李新刚. 城市交通拥堵传播规律与消散控制策略研究[J]. 上海理工大学学报, 2011, 33(6): 701- 708, 508. [GAO Z Y, LONG J C, LI X G. Congestion propagation law and dissipation control strategies for urban traffic[J]. Journal of University of Shanghai for Science and Technology, 2011, 33 (6): 701-708, 508.] [8] SUN X Y, HAN X, BAO J Z, et al. Decision dynamics of departure times: Experiments and modeling[J]. Physica a- Statistical Mechanics and Its Applications, 2017, 483: 74-82. [9] YAN X Y, WANG W X, GAO Z Y, et al. Universal model of individual and population mobility on diverse spatial scales[J]. Nature Communications, 2017, 8(1): 1639. [10] ZHAO F X, SUN H J, WU J J, et al. Analysis of road network pattern considering population distribution and central business district[J]. PlosOne, 2016, 11(3): e0151676. [11] HE Z B, ZHENG L, CHEN P, et al. Mapping to cells: A simple method to extract traffic dynamics from probe vehicle data[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32: 252-267. [12] JIANG R, CHEN J Y, DING Z J, et al. Network operation reliability in a Manhattan- like urban system with adaptive traffic lights[J]. Transportation Research Part C: Emerging Technologies, 2016, 69: 527-547. [13] LI D Q, FU B W, WANG Y P, et al. Percolation transition in dynamical traffic network with evolving critical bottlenecks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112: 669-672. [14] ZHANG L M, ZENG G W, LI D Q, et al. Scale- free resilience of real traffic jams[J]. Proceedings of the National Academy of Sciences, 2019, 116(18): 8673- 8678. [15] ZENG G W, LI D Q, GUO S M, et al. Switch between critical percolation modes in city traffic dynamics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116: 23-28. [16] ZENG G W, GAO J X, SHEKHTMAN L, et al. Multiple metastable network states in urban traffic[J]. Proceedings of the National Academy of Sciences, 2020, 117(30): 17528-17534. [17] 黄海军, 高自友, 田琼, 等. 新型城镇化导向下的城市群综合交通系统管理[J]. 中国科学基金, 2018, 32(2): 214-223. [HUANG H J, GAO Z Y, TIAN Q, et al. The management theory and method of the comprehensive transportation system in city agglomeration under the new urbanization trend[J]. Bulletin of National Natural Science Foundation of China, 2018, 32 (2): 214-223.] [18] GUIMERA R, MOSSA S, TURTSCHI A, et al. The worldwide air transportation network: Anomalous centrality, community structure, and cities' global roles [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(22): 7794- 7799. [19] LI W, CAI X. Statistical analysis of airport network of China[J]. Physical Review E, 2004, 69: 046106. [20] 于海波. 中国航空网络拓扑结构及其演化特征[D]. 北 京: 北 京 大 学, 2005. [YU H B. Topological structure and evolution characteristics of China aviation network [D]. Beijing: Peking University, 2005.] [21] PIEN K C,HAN K,SHANG W L,et al. Robustness analysis of the European air traffic network[J]. Transportmetrica, 2015, 11(9/10): 772-792. [22] 武喜萍, 杨红雨, 韩松臣. 基于复杂网络的空中交通特征与延误传播分析[J]. 航空学报, 2017, 38(S1): 113- 119. [WU X P, YANG H Y, HAN S C. Analysis of properties and delay propagation of air traffic based on complex network[J]. Acta Aeronautica ET Astronautica Sinica, 2017, 38 (S1): 113-119.] [23] ZHOU Y, WANG J, HUANG G Q. Efficiency and robustness of weighted air transport networks[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 122: 14-26. [24] BROCKMANN D, HELBING D. The hidden geometry of complex, network- driven contagion phenomena[J]. Science, 2013, 342(6164): 1337-1342. [25] ADIGA A. et al. Evaluating the impact of international airline suspensions on the early global spread of COVID-19[J]. Med Rxiv, 2020, DOI: 10.1101/ 2020.02.20.20025882. [26] SEN P, DASGUPTA S, CHATTERJEE A, et al. Smallworld properties of the Indian railway network[J]. Physical Review E Statal Nonlinear & Soft Matter Physics, 2002, 67(3): 036106. [27] LI W, CAI X. Empirical analysis of a scale-free railway network in China[J]. Physica a- Statistical Mechanics and its Applications, 2007, 382: 693-703. [28] DERRIBLE S, KENNEDY C. The complexity and robustness of metro networks[J]. Physica A: Statistical Mechanics and its Applications, 2010, 389: 3678-3691. [29] WANG X R, KOC Y, DERRIBLE S, et al. Multi-criteria robustness analysis of metro networks[J]. Physica aStatistical Mechanics and Its Applications, 2017, 474: 19-31. [30] LIU J, LU H P, MA H, et al. Network vulnerability analysis of rail transit plans in Beijng- Tianjin- Hebei region considering connectivity reliability[J]. Sustainability, 2017, 9: 17. [31] SUO Q, GUO J L. The evolutionary mechanism of highspeed railway system based on hypernetwork theory[J]. International Journal of Modern Physics B, 2018, 32: 1850182. [32] WEI Y, NING S. Establishment and analysis of the supernetwork model for Nanjing metro transportation system[J]. Complexity, 2018, 10: 1-11. [33] OUYANG M, TIAN H, WANG Z, et al. Critical infrastructure vulnerability to spatially localized failures with applications to Chinese railway system[J]. Risk Analysis, 2019, 39: 180-194. [34] LIU K, WANG M, CAO Y, et al. A comprehensive risk analysis of transportation networks affected by rainfallinduced multihazards[J]. Risk Anal, 2018, 38(8): 1618- 1633. [35] XU Z, ZHANG Q, CHEN D, et al. Characterizing the connectivity of railway networks[J]. IEEE Trans Intell Transp Syst, 2019, 21(4): 1491-1502. [36] 孙晓璇, 吴晔, 冯鑫, 等. 高铁—普铁的实证双层网络结构与鲁棒性分析[J]. 电子科技大学学报, 2019(2): 315-320. [SUN X X, WU Y, FENG X, et al. Structure characteristics and robustness analysis of multi- layer network of high speed railway and ordinary railway[J]. Journal of University of Electronic Science and Technology of China, 2019(2): 315-320.] [37] 赵金山, 狄增如, 王大辉. 北京市公共汽车交通网络几何性质的实证研究[J]. 复杂系统与复杂性科学, 2005, 2(8): 45- 48. [ZHAO J S, DI Z R, WANG D H. Empirical research on public transport network of Beijing[J]. Complex Systems and Complexity Science, 2005, 2(8): 45-48.] [38] SIENKIEWICZ J, HOLYST J A. Statistical analysis of 22 public transport networks in Poland[J]. Physical Review E, 2005, 72: 046127. [39] 高自友, 吴建军, 毛保华, 等. 交通运输网络复杂性及其相关问题的研究[J]. 交通运输系统工程与信息, 2005, 5(2): 79-84. [GAO Z Y, WU J J, MAO B H, et al. Study on the complexity of traffic networks and related problems[J]. Journal of Transportation Systems Engineering and Information Technology, 2005, 5(2):79-84.] [40] 杜文举, 李引珍, 安新磊. 一类新的双层耦合公交网络模型[J]. 交通运输工程与信息, 2016, 16(4): 131-138. [DU W J, LI Y Z, AN X L. A new class of two layers public traffic coupled network model[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(4): 131-138.] [41] HUANG A L, ZANG G Z, HE Z B, et al. Comparative empirical analysis of flow- weighted transit route networks in r- space and evolution modeling[J]. International Journal of Modern Physics B, 2017, 31 (12): 17500870. [42] LI X, SUN J Q. Intersection multi-objective optimization on signal setting and lane assignment[J]. Physica A: Statistical Mechanics and its Applications, 2019, 525: 1233-1246. [43] WANG Z, LUO D, CATS O, et al. Unraveling the hierarchy of public transport networks[C]. IEEE International Conference on Intelligent Transportation Systems, 2020. [44] ZHENG Z, HUANG Z, ZHANG F, et al. Understanding coupling dynamics of public transportation networks[J]. EPJ Data Science, 2018, 7(1): 23. [45] CATS O, VERMEULEN A, WARNIER M, et al. Modelling growth principles of metropolitan public transport networks[J]. Journal of Transport Geography, 2020, 80: 102567. [46] KALUZA P, KOLZSCH A, GASTNER M T, et al. The complex network of global cargo ship movements[J]. Journal of the Royal Society Interface, 2010, 7(48): 1093. [47] DUCRUET C. Multilayer dynamics of complex spatial networks: The case of global maritime flows (1977-2008) [J]. Journal of Transport Geography, 2017, 60: 47-58. [48] KOJAKU S, XU M Q, XIA H X, et al. Multiscale coreperiphery structure in a global liner shipping network[J]. Scientific Reports, 2019, 9: 15. [49] 毛保华, 高自友, 柏赟, 等. 城市轨道交通网络运营组织理论与方法[M]. 北京: 人民交通出版社, 2018. [MAO B H, GAO Z Y, BAI Y, et al. Theory and method of urban rail transit network operation organization[M]. Beijing: People's Communications Press, 2018.] [50] SZETO W Y, JIANG Y. Transit route and frequency design: Bi- level modeling and hybrid artificial bee colony algorithm approach[J]. Transportation Research Part B: Methodological, 2014, 67: 235-263. [51] NAYEEM M A, RAHMAN M K, RAHMAN M S. Transit network design by genetic algorithm with elitism[J]. Transportation Research Part C: Emerging Technologies, 2014, 46: 30-45. [52] LIU Y, ZHU N, MA S F. Simultaneous optimization of transit network and public bicycle station network[J]. Journal of Central South University, 2015, 22: 1574- 1584. [53] 王炜. 城市公共交通系统规划方法与管理技术[M]. 北 京: 科 学 出 版 社, 2002. [WANG W. Urban public transport system planning method and management technology[M]. Beijing: Science Press, 2002.] [54] CHEN X M, YU L, ZHANG Y S, et al. Analyzing urban bus service reliability at the stop, route, and network levels[J]. Transportation Research Part A: Policy and Practice, 2009, 43: 722-734. [55] ARGYROPOULOU K, ILIOPOULOU C, KEPAPTSOGLOU K. Model for corrective maintenance scheduling of rail transit networks: Application to athens metro[J]. Journal of Infrastructure Systems, 2019, 25(1): 04018035. [56] CANCA D, DE- LOS- SANTOS A, Laporte G, et al. Integrated railway rapid transit network design and line planning problem with maximum profit[J]. Transportation Research Part E: Logistics and Transportation Review, 2019, 127: 1-30. [57] 施闯, 杨长风, 王志鹏, 等. 国家科学技术进步奖一等奖:“中国高精度位置网及其在交通领域的重大应用 ”[OL]. (2019- 01- 08) [2020- 08- 27]. http://www. most. gov.cn/ztzl/gjkxjsjldh/jldh2018/jldh18jlgg/201812/ t20181226_144348.htm. [SHI C, YANG C F, WANG Z P, et al. The first prize of the state science and technology progress award: "China high precision position network and its major applications in the field of transportation”[OL]. (2019- 01- 08) [2020- 08- 27]. http: //www. most. gov. cn/ ztzl/ gjkxjsjldh/ jldh2018/ jldh18jlgg/201812/t20181226_144348.htm.] [58] 王云鹏, 刘东波, 郭继孚, 等. 国家科学技术进步奖二等奖:“大范围路网交通协同感知与联动控制关键技术及应用”[OL]. (2020-01-10) [2020-08-27]. http:// www. most. gov. cn/ ztzl/ gjkxjsjldh/ jldh2019/ jldh19jlgg/202001/t20200103_150916.htm. [WANG Y P, LIU D B, GUO J F, et al. The second prize of national science and technology progress award: “Key technologies and applications of collaborative sensing and linkage control for large-scale road network traffic” [OL]. (2020-01-10) [2020-08-27]. http: //www. most. gov. cn/ ztzl/ gjkxjsjldh/ jldh2019/ jldh19jlgg/ 202001/ t20200103_150916.htm.] [59] 张国伍. 城市智能交通物联网建设探讨:“交通7+1论 坛”第二十三次会议纪实[J]. 交通运输系统工程与信息, 2011, 11(4): 1- 9. [ZHANG G W. Discussions on urban ITS development with internet of things[J]. Journal of Transportation Systems Engineering and Information Technology, 2011, 11(4): 1-9.] [60] DAYA B, AKOUM A H, CHAUVET P. Identification system of the type of vehicle[J]// Proceeding of the 2010 IEEE Fifth International Conference on BioInspired Computing: Theories and Applications (BICTA), Changsha, 2010. [61] SAPRYKIN O, FEDOSEEV A, MIKHEEVA T. Recognition of urban transport infrastructure objects via hyperspectral images[C]. Proceedings of the International Conference on Vehicle Technology and Intelligent Transport Systems, 2016. [62] MARZOUK M, ABDELATY A. Monitoring thermal comfort in subways using building information modeling [J]. Energy and Buildings, 2014, 84: 252-257. [63] WANG Y, YAO J, CHEN G. An evolving super-network model with inter- vehicle communications[J]. Journal of Franklin Institute, 2019, 356(15): 8665-8689. [64] WU X, GUO J F, XIAN K, et al. Hierarchical travel demand estimation using multiple data sources: A forward and backward propagation algorithmic framework on a layered computational graph[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 321-346. [65] SHANG P, LI R, GUO J, et al. Integrating lagrangianand eulerian observations for passenger flow state estimation in an urban rail transit network: A spacetime- state hyper network- based assignment approach [J]. Transportation Research Part B: Methodological, 2019, 121: 135-167. [66] 毛保华, 高自友. 城市轨道交通网络运营资源共享方法与技术进展[J]. 交通运输系统工程与信息, 2018, 18 (3): 1-8. [MAO B H, GAO Z Y. Progress of operational resources sharing methods for urban rail networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 1-8.] [67] AOKI M. Railway operators in Japan IV, central Tokyo [J]. Japan Railway & Transport Review, 2002, 30(3): 42- 53. [68] 何静, 朱海燕, 宋敏. 上海轨道交通3、4号线共线运营分析[J]. 城市轨道交通研究, 2008(4): 48-51, 55. [HE J, ZHU H Y, SONG M. On joint operation organization on Shanghai URT line 3 and line 4[J]. Urban Mass Transit, 2008(4): 48-51, 55.] [69] 郭建民, 韩林飞, 周建国, 等. Y形共线模式下轨道交通列车开行方案研究[J]. 铁道工程学报, 2017, 34(2): 87-92. [GUO J M, HAN L F, ZHOU J G, et al. Research on the operation scheme for rail transit with the Yshaped collinear mode[J]. Journal of Railway Engineering Society, 2017, 34(2): 87-92.] [70] SAFFARZADEHM, BRAAKSMA J. Optimum design and operation of airport passenger terminal buildings[J]. Transportation Research Record Journal of the Transportation Research Board, 2000, 1703: 72-82. [71] VERMA A, DHINGRA S L. Developing integrated schedules for urban rail and feeder bus operation[J]. Journal of Urban Planning and Development, 2006, 132: 138-146. [72] XIONG J, GUAN W, SONG L Y, et al. Optimal routing design of a community shuttle for metro stations[J]. Journal of Transportation Engineering, 2013, 139: 1211- 1223. [73] XIONG J, HE Z B, GUAN W, et al. Optimal timetable development for community shuttle network with metro stations[J]. Transportation Research Part C: Emerging Technologies, 2015, 60: 540-565. [74] GUO C, LI D M, ZHANG G L, et al. Real- time path planning in urban area via vanet- assisted traffic information sharing[J]. IEEE Transactions on Vehicular Technology, 2018, 67: 5635-5649. [75] 张乐, 刘云. 基于CCOA 的铁路运营支撑系统资源共享平台的设计[J]. 铁路计算机应用, 2011, 20(3): 21- 22, 25. [ZHANG L, LIU Y. Design of resource sharing platform for railway operation support system based on CCOA[J]. Railway Computer Application, 2011, 20(3): 21-22, 25. [76] 宋元胜, 魏德勇, 周天星. 三铁融合综合轨道交通方案研究路径探讨[J]. 铁道工程学报, 2018, 35(10): 1-5. [SONG Y S, WEI D Y, ZHOU T X. Exploration on the path of integrated rail transit scheme with three-railway integration[J]. Journal of Railway Engineering Society, 2018, 35(10): 1-5. [77] ZHANG S Y, LO H K. Metro disruption management: Optimal initiation time of substitute bus services under uncertain system recovery time[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 409-427. [78] LIN L, HE Z B, PEETA S. Predicting station- level hourly demand in a large-scale bike sharing network: A graph convolutional neural network approach[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 258-276. [79] CAGGIANI L, CAMPOREALE R, OTTOMANELLI M, et al. A modeling framework for the dynamic management of free-floating bike-sharing systems[J]. Transportation Research Part C: Emerging Technologies, 2018, 87: 159-182. [80] LIU Z, MIWA T, ZENG W, et al. Dynamic shared autonomous taxi system considering on- time arrival reliability[J]. Transportation Research Part C: Emerging Technologies, 2019, 103: 281-297. [81] CZIOSKA P, MATTFELD D C, SESTER M. GIS- based identification and assessment of suitable meeting point locations for ride- sharing[J]. Transportation Research Procedia, 2017, 22: 314-324. [82] 关伟, 闫学东, 赵小梅, 等. 区域交通网络化智能诱导控制技术[M]. 北京: 电子工业出版社, 2015. [GUAN W, YAN X D, ZHAO X M, et al. Intelligent guidance and control technology for regional traffic network[M]. Beijing: Electronic Industry Press, 2015.] [83] 华先胜. 如何用智能有效感知城市? [OL]. (2018-05- 13) [2020- 08- 27]. https: //yq. aliyun. com/ articles/ 587520. [HUA G S. How to effectively perceive a city with intelligence? [OL]. (2018-05-13) [2020-08-27]. https://yq.aliyun. com/articles/587520.] [84] SHI J J, WU X, GUAN J Z, et al. The analysis of traffic control cyber- physical systems[J]. Procedia Social and Behavioral Sciences, 2013, 96: 2487-2496. [85] WANG F Y. Parallel control and management for intelligent transportation systems: Concepts, architectures, and applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11: 630- 638. [86] NING B, DONG H R, GAO S G, et al. Distributed cooperative control of multiple high- speed trains under a moving block system by nonlinear mapping- based feedback[J]. Science China-Information Sciences, 2018, 61(12): 18-29. [87] WANG H F, ZHAO N, NING B, et al. Safety monitor for train-centric CBTC system[J]. IET Intelligent Transport Systems, 2018, 12: 931-938. [88] HE G, LU Y, CHEN Y, et al. Chaos in traffic flow based on optimal velocity model[J]. Traffic and Transportation Studies, 2006, 22(1): 53-57. [89] 关积珍, 郑长青, 朱雪良, 等. 北 京 奥 运 交 通 诱 导 VMS 信 息 发 布 研 究 [J]. 交 通 运 输 系 统 工 程 与 信息, 2008, 8(6): 115- 120. [GUAN J Z, ZHENG C Q, ZHU X L, et al. VMS release of traffic guide information in Beijing Olympics[J]. Journal of Transportation Systems Engineering and Information Technology, 2008, 8(6): 115-120.] [90] GANG C, ZHANG Y, YAO D. Short- term traffic flow forecasting model for regional road network based on spatial- temporal dependency[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(2): 215- 221. [91] ZHANG L H, SONG Z Q, TANG X J, et al. Signal coordination models for long arterials and grid networks [J]. Transportation Research Part C: Emerging Technologies, 2016, 71: 215-230. [92] YU C H, MA W J, HAN K, et al. Optimization of vehicle and pedestrian signals at isolated intersections[J]. Transportation Research Part B: Methodological, 2017, 98: 135-153. [93] WANG Y Z, YANG X G, LIU Y D, et al. Evaluation and application of urban traffic signal optimizing control strategy based on reinforcement learning[J]. Journal of Advanced Transportation, 2018, 2018: 1-9. [94] TAN T, BAO F, DENG Y, et al. Cooperative deep reinforcement learning for large-scale traffic grid signal control[J]. IEEE Transactions on Cybernetics, 2020, 50 (6): 2687-2700. [95] 马寿峰, 卜军峰, 张安训. 交通诱导中系统最优与用户最优的博弈协调[J]. 系统工程学报, 2005, 20(1): 30- 37. [MA S F, BU J F, ZHANG A X. Game- based coordination method between system optimum and user equilibrium in route guidance system[J]. Journal of Systems Engineering, 2005, 20(1): 30-37.] [96] WU J, LIU P, QIN X, et al. Developing an actuated signal control strategy to improve the operations of contraflow left- turn lane design at signalized intersections[J]. Transportation Research Part C: Emerging Technologies, 2018, 104: 53-65. [97] LI P F, MIRCHANDANI P, ZHOU X S. Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork[J]. Transportation Research Part B: Methodological, 2015, 81: 103-130. |
[1] | 张峻屹, 李双金, 马爽. 基于市民生活行为学的交通行为研究综述[J]. 交通运输系统工程与信息, 2022, 22(2): 1-16. |
[2] | 李杰梅, 高丽, 祁婧洁, 尹琪. 腹地-口岸可达性格局演化及其空间溢出效应分析[J]. 交通运输系统工程与信息, 2022, 22(2): 29-36. |
[3] | 冯芬玲, 孙楠佳. 考虑时间价值的中非多式联运路径与出海港选择[J]. 交通运输系统工程与信息, 2022, 22(2): 45-53. |
[4] | 刘忠波, 王淇娴, 郑红星. 海空协同的远海岛礁战储物资供给优化模型与算法[J]. 交通运输系统工程与信息, 2022, 22(2): 268-279. |
[5] | 张英贵, 肖杨, 雷定猷, 陆强. 长大货物多式联运网络风险传播动力学仿真[J]. 交通运输系统工程与信息, 2022, 22(1): 14-23. |
[6] | 诸立超, 甄伟, 刘昭然. 生命周期视角下货运通道能耗测度与节能潜力分析[J]. 交通运输系统工程与信息, 2022, 22(1): 24-29. |
[7] | 范博松, 邵春福. 城市轨道交通系统动态风险模态分析建模[J]. 交通运输系统工程与信息, 2021, 21(6): 203-209. |
[8] | 毛保华, 卢霞, 黄俊生, 何天健, 陈海波. 碳中和目标下氢能源在我国运输业中的发展路径[J]. 交通运输系统工程与信息, 2021, 21(6): 234-243. |
[9] | 张毅, 姚丹亚, 李力, 裴华鑫, 晏松, 葛经纬. 智能车路协同系统关键技术与应用[J]. 交通运输系统工程与信息, 2021, 21(5): 40-51. |
[10] | 彭宏勤, 张国伍. 新技术对“十四五”及2035年交通运输系统发展的影响 ——“交通7+1论坛”第五十七次会议[J]. 交通运输系统工程与信息, 2021, 21(4): 1-5. |
[11] | 马继辉, 王瀛帜, 姜秀山, 卫亮. 基于博弈论的空铁联运收益分配模型[J]. 交通运输系统工程与信息, 2021, 21(4): 23-29. |
[12] | 陶思然, 叶霞飞. 引入旅游偏好的城际客运出行分布预测模型[J]. 交通运输系统工程与信息, 2021, 21(4): 140-147. |
[13] | 张玉召. 快捷货运服务网络设计研究综述[J]. 交通运输系统工程与信息, 2021, 21(3): 1-12. |
[14] | 肖中圣,许奇,冯旭杰,李佳杰. 基于可控性的城市轨道交通客流控制车站识别方法[J]. 交通运输系统工程与信息, 2021, 21(3): 150-155. |
[15] | 张亚男,席洋,杨嘉钰,刘剑锋. 海南自贸港背景下海口市对外客运量预测研究[J]. 交通运输系统工程与信息, 2021, 21(3): 260-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||