[1] 杨浩. 铁路运输组织学(第四版)[M]. 北京: 中国铁道出
版 社 ,2017. [YANG H. Railway transport organization
(The Fourth Edition) [M]. Beijing: China Railway
Publishing House, 2017.]
[2] 毛保华. 城市轨道交通系统运营管理(第二版)[M]. 北 京: 人民交通出版社, 2017. [MAO B H. Operations and
management for urban rail transit (The Second Edition)
[M]. Beijing: China Communications Press, 2017.]
[3] 胡思继. 列车运行图编制理论与方法[M]. 北京: 中国
铁道出版社, 2013. [HU S J. Theory and method of train
scheduling design[M]. Beijing: China Railway Publishing
House, 2013.]
[4] 彭其渊, 杨明伦, 聂勋煌. 单线区段实用货物列车运行
图的优化模型及算法[J]. 铁道学报, 1995 (3): 15-20.
[PENG Q Y, YANG M L, NIE X H. Optimization model
and its algorithm for making wagon diagram on singletrack lines[J]. Journal of the China Railway Society, 1995
(3): 15-20.]
[5] 周磊山, 胡思继, 马建军, 等. 计算机编制网状线路列
车运行图方法研究[J]. 铁道学报, 1998(5): 15- 21.
[ZHOU L S, HU S J, MA J J, et al. Network hierarchy
parallel algorithm of automatic train scheduling[J].
Journal of the China Railway Society, 1998(5): 15-21.]
[6] 倪少权, 吕红霞, 杨明伦. 全路列车运行图编制系统设
计的研究[J]. 西南交通大学学报, 2003(3): 332-335.
[NI S Q, LV H X, YANG M L. Research on design of
train diagram-making system of railways in China[J].
Journal of Southwest Jiaotong University, 2003(3): 332-
335.]
[7] 毛保华, 王保山, 徐彬, 等. 我国铁路列车运行计划集
成编制方法研究[J]. 交通运输系统工程与信息, 2009, 9(2): 27- 37. [MAO B H, WANG B S, XU B, et al. On
integrated train operational scheme drawing-up platform
of China[J]. Journal of Transportation Systems
Engineering and Information Technology, 2009, 9(2): 27-
37.]
[8] CAPRARA A, TOTH F P. Modeling and solving the train
timetabling problem[J]. Operations Research, 2002, 50
(5): 851-861.
[9] BRANNLUND U, LINDBERG P O, NOU A, et al.
Railway timetabling using lagrangian relaxation[J].
Transportation Science, 1998, 32(4): 358-369.
[10] TIAN X, NIU H. Optimization of demand- oriented train
timetables under overtaking operations: A surrogate-dualvariable column generation for eliminating indivisibility
[J]. Transportation Research Part B, 2020, 142: 143-173.
[11] GOOSSENS J, VAN HOESEL S P, KROON L. A branchand-cut approach for solving railway line-planning
problems[J]. Transportation Science, 2004, 38(3): 379-
393.
[12] CAPRARA A, MONACI M, TOTH P. A Lagrangian
heuristic algorithm for a real-world train timetabling
problem[J]. Discrete Applied Mathematics, 2006, 154(5):
738-753.
[13] BURDETT R L, KOZAN E. Techniques for inserting
additional trains into existing timetables[J].
Transportation Research Part B, 2009, 43(8/9): 821-836.
[14] CACCHIANI V, CAPRARA A, TOTH P. Scheduling
extra freight trains on railway networks[J]. Transportation
Research Part B, 2010, 44(2): 215-231.
[15] JIANG F, CACCHIANI V, TOTH P. Train timetabling
by skip-stop planning in highly congested lines[J].
Transportation Research Part B, 2017, 104: 149-174.
[16] CORMAN F, DARIANO A, PACCIARELLI D, et al.
Evaluation of green wave policy in real-time railway
traffic management[J]. Transportation Research Part C,
2009, 17(6): 607-616.
[17] LUSBY R, LARSEN J, EHRGOTT M, et al. A setpacking inspired method for real-time junction train
routing[J]. Computers & Operations Research, 2013, 40:
713-724.
[18] MENG L, ZHOU X. Robust single-track train dispatching
model under a dynamic and stochastic environment: A
scenario based rolling horizon solution approach[J].
Transportation Research Part B, 2011, 45: 1080-1102.
[19] LAMORGESE L, MANNINO C. An exact decomposition
approach for the real-time train dispatching problem[J].
Operations Research, 2015, 63(1): 48-64.
[20] YANG L, QI J, LI S, et al. Collaborative optimization for
train scheduling and train stop planning on high-speed
railways[J]. Omega, 2016, 64: 57-76.
[21] ALTAZIN E, DAUZEREPERES S, RAMOND F, et al.
Rescheduling through stop-skipping in dense railway
systems[J]. Transportation Research Part C, 2017, 79:
73-84.
[22] SHANG P, LI R, LIU Z, et al. Equity-oriented skipstopping schedule optimization in an oversaturated urban
rail transit network[J]. Transportation Research Part C,
2018, 89: 321-343.
[23] KROON L, PEETERS L, WAGENAAR J, et al. Flexible
connections in PESP models for cyclic passenger railway
timetabling[J]. Transportation Science, 2014, 48(1): 136-
154.
[24] FONSECA J F, DER HURK E V, ROBERTI R, et al. A
matheuristic for transfer synchronization throughintegrated timetabling and vehicle scheduling[J].
Transportation Research Part B, 2018, 109: 128-149.
[25] VEELENTURF L P, KIDD M P, CACCHIANI V, et al. A
railway timetable rescheduling approach for handling
large-scale disruptions[J]. Transportation Science, 2016,
50(3): 841-862.
[26] NIU H, ZHOU X. Optimizing urban rail timetable under
time-dependent demand and oversaturated conditions[J].
Transportation Research Part C, 2013, 36: 212-230.
[27] BARRENA E, CANCA D, COELHO L C, et al. Singleline rail rapid transit timetabling under dynamic
passenger demand[J]. Transportation Research Part B,
2014, 70: 134-150.
[28] HASSANNAYEBI E, ZEGORDI S H, YAGHINI M.
Train timetabling for an urban rail transit line using a
Lagrangian relaxation approach[J]. Applied
Mathematical Modelling, 2016, 40(23): 9892-9913.
[29] SHI J, YANG L, YANG J, et al. Service- oriented train
timetabling with collaborative passenger flow control on
an oversaturated metro line: An integer linear
optimization approach[J]. Transportation Research Part
B, 2018, 110: 26-59.
[30] LIU L, DESSOUKY M. Stochastic passenger train
timetabling using a branch and bound approach[J].
Computers & Industrial Engineering, 2019, 127: 1223-
1240.
[31] SHAFIA M A, AGHAEE M P, SADJADI S J, et al.
Robust train timetabling problem: Mathematical model
and branch and bound algorithm[J]. IEEE Transactions
on Intelligent Transportation Systems, 2012, 13(1): 307-
317.
[32] MENG L, ZHOU X. Simultaneous train rerouting and
rescheduling on an N-track network: A model
reformulation with network-based cumulative flow
variables[J]. Transportation Research Part B, 2014, 67:
208-234.
[33] SHI T, ZHOU X. A mixed integer programming model for
optimizing multi-level operations process in railroad
yards[J]. Transportation Research Part B, 2015, 80: 19-
39.
[34] CACCHIANI V, CAPRARA A, TOTH P. A column
generation approach to train timetabling on a corridor[J].
A Quarterly Journal of Operations Research, 2008, 6(2):
125-142.
[35] FISCHETTI M, MONACI M. Using a general-purpose
mixed-integer linear programming solver for the practical
solution of real-time train rescheduling[J]. European
Journal of Operational Research, 2017, 263(1): 258-264.
[36] GAO R, NIU H. A priority- based ADMM approach for
flexible train scheduling problems[J]. Transportation
Research Part C, 2021, 123: 102960.
[37] HUANG Y, YANG L, TANG T, et al. Joint train
scheduling optimization with service quality and energy
efficiency in urban rail transit networks[J]. Energy, 2017,
138: 1124-1147.
[38] YIN J, TANG T, YANG L, et al. Energy- efficient metro
train rescheduling with uncertain time-variant passenger
demands: An approximate dynamic programming
approach[J]. Transportation Research Part B, 2016, 91:
178-210.
[39] YIN J, YANG L, TANG T, et al. Dynamic passenger
demand oriented metro train scheduling with energyefficiency and waiting time minimization: Mixed-integer
linear programming approaches[J]. Transportation
Research Part B, 2017, 97: 182-213.
[40] SPARING D, GOVERDE R M. A cycle time optimization
model for generating stable periodic railway timetables
[J]. Transportation Research Part B, 2017, 98: 198-223.
[41] NACHTIGALL K, VOGET S. Minimizing waiting times
in integrated fixed interval timetables by upgrading
railway tracks[J]. European Journal of Operational
Research, 1997, 103(3): 610-627.
[42] ROBENEK T, AZADEH S S, MAKNOON Y, et al.
Hybrid cyclicity: Combining the benefits of cyclic and
non-cyclic timetables[J]. Transportation Research Part C,
2017, 75: 228-253.
[43] NITISIRI K, GEN M, OHWADA H. A parallel multiobjective genetic algorithm with learning based mutation
for railway scheduling[J]. Computers & Industrial
Engineering, 2019, 130: 381-394.
[44] BARRENA E, CANCA D, COELHO L C, et al. Exact
formulations and algorithm for the train timetabling
problem with dynamic demand[J]. Computers &
Operations Research, 2014, 44: 66-74.
[45] WANG Y, NING B, TANG T, et al. Efficient real- time
train scheduling for urban rail transit systems using
iterative convex programming[J]. IEEE Transactions on
Intelligent Transportation Systems, 2015, 16(6): 3337-
3352.
[46] NIU H, ZHOU X, GAO R. Train scheduling for
minimizing passenger waiting time with time- dependent
demand and skip-stop patterns: Nonlinear integer
programming models with linear constraints[J].
Transportation Research Part B, 2015, 76: 117-135.
[47] ZHOU X, ZHONG M. Train scheduling for high-speed
passenger railroad planning applications[J]. European
Journal of Operational Research, 2005, 167(3): 752-771.
[48] DARIANO A, PACCIARELLI D, PRANZO M. A branch
and bound algorithm for scheduling trains in a railway
network[J]. European Journal of Operational Research,
2007, 183(2): 643-657.
[49] MANNINO C, MASCIS A. Optimal real-time traffic
control in metro stations[J]. Operations Research, 2009,
57(4): 1026-1039.
[50] NIU H, TIAN X, ZHOU X. Demand-driven train
schedule synchronization for high-speed rail lines[J].
IEEE Transactions on Intelligent Transportation
Systems, 2015, 16(5): 2642-2652.
[51] CHEN Z, LI X, ZHOU X. Operational design for shuttle
systems with modular vehicles under oversaturated
traffic: Discrete modeling method[J]. Transportation
Research Part B, 2019, 122: 1-19.
[52] FISHER M L. The Lagrangian relaxation method for
solving integer programming problems[J]. Management
Science, 1981, 27(1): 1-18.
[53] CACCHIANI V, CAPRARA A, FISCHETTI M. A
Lagrangian heuristic for robustness, with an application
to train timetabling[J]. Transportation Science, 2012, 46
(1): 124-133.
[54] ZHOU X, ZHONG M. Single-track train timetabling with
guaranteed optimality: Branch and bound algorithms with
enhanced lower bounds[J]. Transportation Research Part
B, 2007, 41(3): 320-341.
[55] YANG L, DI Z, DESSOUKY M, et al. Collaborative
optimization of last- train timetables with accessibility:
A space-time network design based approach[J].
Transportation Research Part C, 2020, 114: 572-597.
[56] MAHMOUDI M, ZHOU X. Finding optimal solutions
for vehicle routing problem with pickup and delivery
services with time windows: A dynamic programming
approach based on state-space-time network
representations[J]. Transportation Research Part B,
2016, 89: 19-42.
[57] LU G, ZHOU X, MAHMOUDI M, et al. Optimizing
resource recharging location- routing plans: A resourcespace-time network modeling framework for railway
locomotive refueling applications[J]. Computers &
Industrial Engineering, 2019, 127: 1241-1258.
[58] BARNHART C, HANE C A, VANCE P H. Using branchand-price-and-cut to solve origin-destination integer
multicommodity flow problems[J]. Operations Research,
2000, 48(2): 318-326.
[59] 李得伟, 丁世顺, 张琦, 等. 基于客流需求的城际列车
时刻表模型改进研究[J]. 交通运输系统工程与信息,
2017, 17(3): 157-164. [LI D W, DING S S, ZHANG Q,
et al. Improved dynamic demand oriented timetabling
model for intercity railway[J]. Journal of Transportation
Systems Engineering and Information Technology, 2017,
17(3): 157-164.]
[60] 江峰, 倪少权, 吕红霞. 基于拉格朗日松弛的高速铁路
列车运行图新增运行线局部调整模型[J]. 交通运输系
统工程与信息, 2018, 18(4): 163-170. [JIANG F, NI S
Q, LV H X. A high-speed railway new-added train
timetable partial adjustment model based on Lagrangian
relaxation[J]. Journal of Transportation Systems
Engineering and Information Technology, 2018, 18(4):
163-170.]
[61] 廖正文, 苗建瑞, 孟令云, 等. 基于拉格朗日松弛的双
线铁路列车运行图优化算法[J]. 铁道学报, 2016, 38
(9): 1-8. [LIAO Z W, MIAO J R, MENG L Y, et al. An
optimization algorithm for double-track railway train
timetabling based on Lagrangian relaxation [J]. Journal of
the China Railway Society, 2016, 38(9): 1-8.]
[62] 许红, 马建军, 龙建成. 客运专线列车运行图编制模型
及计算方法的研究[J]. 铁道学报, 2007(2): 1-7. [XU H,
MA J J, LONG J C. Research on the model and algorithm
of the train working diagram of dedicated passenger line
[J]. Journal of the China Railway Society, 2007(2): 1-7.]
[63] 朱宇婷, 郭继孚, 余柳, 等. 考虑拥挤的轨道交通网络
时刻表协调优化建模[J]. 交通运输系统工程与信息,
2017, 17(6): 175-181. [ZHU Y T, GUO J F, YU L, et al.
Congestion-based timetable synchronization optimization
model in urban subway network[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2017, 17(6):175-181.]
|