[1] 赵雪峰, 吴伟伟, 吴德林, 等. 基于 TPCBoost 模型的新型交通服务定价研究: 以纽约网约车为实例[J]. 中国
管理科学, 2022, 30(10): 210-223. [ZHAO X F, WU W
W, WU D L, et al. Research on the pricing of new
transportation services based on TPCboost model: Take
NewYork city for example[J]. Chinese Journal of
Management Science, 2022, 30(10): 210-223.]
[2] CHEN R Y, ZHOU J P. Fare adjustment's impacts on
travel patterns and farebox revenue: An empirical study
based on longitudinal smartcard data[J]. Transportation
Research Part A, 2022, 164: 111-133.
[3] ZHANG F, LIU W. An economic analysis of integrating
bike sharing service with metro systems[J].
Transportation Research Part D: Transport and
Environment, 2021, 99: 103008.
[4] 邓连波, 徐毅梅, 段科屹. 城市公交线网的一票制差异化票价策略优化[J]. 交通运输系统工程与信息, 2019,
19(5): 128-134. [DEND L B, XU Y M, DUAN K Y.
Optimization method for differentiated pricing strategy of
flat fare in urban bus transit network[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2019, 19(5): 128-134.]
[5] 李雪岩, 祝歆, 李静. 城市公交线网差异化计程票价多目标优化[J]. 交通运输系统工程与信息, 2020, 20(5):
148-155, 176. [LI X Y, ZHU X, LI J. Multi-objective
optimization of urban public transportation network
differentiated fare[J]. Journal of Transportation Systems
Engineering and Information Technology, 2020, 20(5):
148-155.]
[6] LI X Y, QIU H T, YANG Y N, et al. Differentiated fares
depend on bus line and time for urban public transport
network based on travelers' day-to-day group behavior[J].
Physica A: Statistical Mechanics and its Applications,
2022, 593: 126883.
[7] 朱顺应, 廖凌云, 吴景安, 等. 城市客运交通工具碳排放效率差异: 以襄阳市为例[J]. 交通运输系统工程与
信息, 2022, 22(4): 158-166. [ZHU S Y, LIAO L Y, WU
J A, et al. Urban passenger transportation mode carbon
emission efficiency difference: A case study of
Xiangyang city[J]. Journal of Transportation SystemsEngineering and Information Technology, 2022, 22(4):
158-166.]
[8] 吕莹, 郭淳, 孙会君, 等. 考虑出行竞争的网约车能源环境效应不确定性研究[J]. 交通运输系统工程与信
息, 2021, 21(6): 289-297. [LV Y, GUO C, SUN H J,
et al. Uncertainty of energy and environment effects of
ride-hailing considering travel competition[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2021, 21(6): 289-297.]
[9] LI S Y, YANG S X, WANG Y F, et al. A modular
neural network-based population prediction strategy for
evolutionary dynamic multi-objective optimization[J].
Swarm and Evolutionary Computation, 2021, 62: 100829.
[10] BUBA A T, LEE L S. A differential evolution for
simultaneous transit network design and frequency
setting problem[J]. Expert Systems with Applications,
2018(106): 277-289.
|