[1] REZAZADA M, NASSIR N, TANIN E, et al. Bus
bunching: A comprehensive review from demand, supply,
and decision-making perspectives[J]. Transport Reviews,
2024, 44(4): 1-25.
[2] COMI A, SASSANO M, VALENTINI A. Monitoring and
controlling real-time bus services: A reinforcement
learning procedure for eliminating bus bunching[J].
Transportation Research Procedia, 2022, 62: 302-309.
[3] GKIOTSALITIS K. Bus operations optimization: A
literature review on bus holding, rescheduling and stopskipping[C]. Washington: In 99th Transportation
Research Board (TRB) Annual Meeting, 2020.
[4] 金梦宇, 何胜学, 张思潮. 考虑尾气污染的公交跳站策略研究[J]. 华东交通大学学报, 2020, 37(5): 53-59.
[JIN M Y, HE S X, ZHANG S C. Study on bus stop-skip
strategy considering bus emission[J]. Journal of East
China Jiaotong University, 2020, 37(5): 53-59.]
[5] LIU M, ZHAO J, HOOGENDOORN S P, et al. An
optimal control approach of integrating traffic signals and
cooperative vehicle trajectories at intersections[J].
Transportmetrica B: Transport Dynamics, 2022, 10(1):
971-987.
[6] 翁剑成, 李文杰, 林鹏飞, 等. 考虑车速调控和乘车引导的公交运行优化控制策略[J]. 交通运输系统工程与信息, 2023, 23(6): 165-175. [WENG J C, LI W J, LIN P
F, et al. Bus operation optimization control strategy
considering speed regulation and boarding guidance[J].
Journal of Transportation Systems Engineering and
Information Technology, 2023, 23(6): 165-175.]
[7] HE S X, LIANG S D, DONG J, et al. A holding strategy to
resist bus bunching with dynamic target headway[J].
Computers & Industrial Engineering, 2020,140: 106237.
[8] 姜瑞森, 胡大伟, 孙倩, 等. 基于实时车辆信息共享的公交动态控制策略[J]. 长安大学学报(自然科学版),
2023, 43(6): 95-105. [JIANG R S, HU D W, SUN Q,
et al. Dynamic control strategy for public transportation
based on real-time information sharing[J]. Journal of
Chang'an University (Natural Science Edition), 2023, 43
(6): 95-105.]
[9] 黄青霞, 贾斌, 强生杰, 等. 基于驻站和限流的组合公交控制策略研究[J]. 交通运输系统工程与信息, 2018,
18(4): 103-109. [HUANG Q X, JIA B, QIANG S J, et al.
Integrated bus control strategy considering holding and
limited-boarding[J]. Journal of Transportation Systems
Engineering and Information Technology, 2018, 18(4):
103-109.]
[10] SIRMATEL I I, GEROLIMINIS N. Mixed logical
dynamical modeling and hybrid model predictive control
of public transport operations[J]. Transportation
Research Part B: Methodological, 2018, 114: 325-345.
[11] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Humanlevel control through deep reinforcement learning[J].
Nature, 2015, 518(7540): 529-533.
[12] YING C S, CHOW A H, CHIN K S. An actor-critic deep
reinforcement learning approach for metro train
scheduling with rolling stock circulation under stochastic
demand[J]. Transportation Research Part B:
Methodological, 2020, 140: 210-235.[13] ALESIANI F, GKIOTSALITIS K. Reinforcement learningbased bus holding for high-frequency services[C]. Maui:
International Conference on Intelligent Transportation
Systems, 2018.
[14] WANG J, SUN L. Dynamic holding control to avoid bus
bunching: A multi-agent deep reinforcement learning
framework[J]. Transportation Research Part C: Emerging
Technologies, 2020, 116: 102661.
[15] FU L, YANG X. Design and implementation of bus-holding control strategies with real-time information[J].
Transportation Research Record, 2002, 1791(1): 6-12.
|