交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (1): 160-172.DOI: 10.16097/j.cnki.1009-6744.2025.01.016

• 系统工程理论与方法 • 上一篇    下一篇

建成环境影响下的城市轨道交通客流多步短时预测

李之红*1a,郄堃1a,王健宇1a,许晗2,陈金政1b   

  1. 1. 北京建筑大学,a.通用航空技术北京实验室,b.建筑与城市规划学院,北京100044;2.北京交通发展研究院,北京101160
  • 收稿日期:2024-06-13 修回日期:2024-12-04 接受日期:2024-12-06 出版日期:2025-02-25 发布日期:2025-02-24
  • 作者简介:李之红(1981—),男,河北秦皇岛人,教授,博士。
  • 基金资助:
    国家自然科学基金(52402377);北京市自然科学基金(9234025);北京市属高等学校高水平科研创新团队建设支持计划项目(BPHR20220109)。

Multistep Short-term Prediction of Urban Rail Transit Passenger Flow Under Influence of Built Environment

LI Zhihong*1a, QIE Kun1a, WANG Jianyu1a, XU Han2, CHEN Jinzheng1b   

  1. 1a. Beijing Laboratory for General Aviation Technology, 1b. School of Architecture and Urban Planning, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2. Beijing Transport Institute, Beijing 101160, China
  • Received:2024-06-13 Revised:2024-12-04 Accepted:2024-12-06 Online:2025-02-25 Published:2025-02-24
  • Supported by:
    National Nature Science Foundation of China(52402377);Natural Science Foundation of Beijing, China (9234025);Project of Construction and Support for High-level Innovative Teams of Beijing Municipal Institutions (BPHR20220109)。

摘要: 为挖掘客流的复杂时空耦合关系,解析建成环境影响下的轨道交通客流出行规律,本文提出一种考虑城市建成环境的时空双层超图神经网络模型(SpatialTemporal-Double Hypergraph Neural Network, ST-DHGNN)。模型分为双层超图神经网络和时间序列模块,双层超图神经网络模块用于挖掘轨道交通线路站点间的高阶连通关系和相邻同类建成区域站点的集群关系,时间序列模块用于表征历史客流数据的时间依赖关系。同时,以建成环境和线路作为变量构造新的损失函数,旨在剖析建成环境的影响,提高模型的预测性能。最后,以武汉轨道交通数据为例开展实证研究。研究结果显示:考虑建成环境和轨道站点高阶连通关系对客流预测精度的提升效果显著,本模型均方根误差(RMSE)和平均绝对误差(MAE)值分别为52.04和29.32,比基线模型降低了22%以上,性能显著优于基线模型;通过消融实验验证了融合轨道高阶联通关系和建成环境对模型性能的贡献,其中,单步预测任务中,考虑这两种因素使模型性能分别提升了6%和9%,多步预测任务中,分别提升了4%和12%;构造的融合建成环境因素的可解释损失函数,提高了模型的预测性能,同时,使模型具备更好的科学性和可解释性。研究成果为城市轨道交通的客流管理和列车调度提供了技术支持。

关键词: 智能交通, 客流多步预测, 超图时空网络, 城市轨道交通, 建成环境影响, 可解释损失函数

Abstract: To analyze the spatiotemporal coupling relationships of passenger flow and the passengers travel patterns in urban rail transit, this paper proposes a spatial-temporal double-hypergraph neural network model considering the urban built environment, which is called ST-DHGNN (Spatial Temporal-Double Hypergraph Neural Network). The model is consisted of a double hypergraph neural network module and a time series module. The double-hypergraph neural network module is designed to uncover high-order connectivity among rail transit line stations and clustering relationships among neighboring stations within similar built-up areas. The time series module is utilized to represent the temporal dependencies in historical passenger flow data. Additionally, a new loss function is developed with the built environment and lines as variables, aiming to dissect the impact of the built environment and enhance the model's predictive performance. An empirical study is conducted using Wuhan Metro data as an example. The results indicate that: (1) Considering the built environment and high-order connectivity among rail stations significantly improves passenger flow prediction accuracy. The proposed model achieves Root Mean Square Error (RMSE) of 52.04 and Mean Absolute Error (MAE) values of 29.32. The performance was improved by over 22% compared to baseline models. (2) The ablation experiments have verified the contribution of integrating high-order connectivity relationships of movement trajectories and the built environment to the model's performance. Specifically, in the single-step prediction task,considering these two factors improves the model's performance by 6% and 9%, respectively. In the multi-step prediction task, the improvements are 4% and 12%, respectively. (3) The constructed interpretable loss function incorporating built environment factors enhances the model's predictive capability while imparting better scientific rigor and interpretability. The study can provide technical support for passenger flow management and train scheduling in urban rail transit.

Key words: intelligent transportation, multi-step passenger flow forecasting, hypergraph spatiotemporal networks, urban rail transit, built environment impact, interpretable loss function

中图分类号: