[1]CHUWANG D D, CHEN W, ZHONG M. Short-term
urban rail transit passenger flow forecasting based on
fusion model methods using univariate time series[J].
Applied Soft Computing, 2023, 147: 110740.
[2]GAO C, LIU H, HUANG J, et al. Regularized spatial
temporal graph convolutional networks for metro
passenger flow prediction[J]. IEEE Transactions on
Intelligent Transportation Systems, 2024, 25(9): 11241
11255.
[3]LI Z, WANG X, CAI H, et al. Novel hybrid
spatiotemporal convolution neural network model for
short-term passenger flow prediction in a large-scale
metro system[J]. Journal of Transportation Engineering,
Part A: Systems, 2024, 150(5): 04024016.
[4]WANG J, ZHANG Y, WEI Y, et al. Metro passenger flow
prediction via dynamic hypergraph convolution networks[J]. IEEE Transactions on Intelligent Transportation
Systems, 2021, 22(12): 7891-7903.
[5]WANG M, ZHANG Y, ZHAO X, et al. Traffic origin
destination demand prediction via multi-channel
hypergraph
convolutional
networks[J].
IEEE
Transactions on Computational Society Systems, 2024, 11
(4): 5496-5509.
[6]HU L, SUN T, WANG L. Evolving urban spatial structure
and commuting patterns: A case study of Beijing, China
[J]. Transportation Research Part D: Transport and
Environment, 2018, 59: 11-22.
[7]许心越,孔庆雪,李建民,等.建成环境对轨道交通客流的时空异质性影响分析[J].交通运输系统工程与信息, 2023, 23(4): 194-202, 281. [XU X Y, KONG Q X,
LI J M, et al. Analysis of spatio-temporal heterogeneity
impact of built environment on rail transit passenger flow
[J]. Journal of Transportation Systems Engineering and
Information Technology, 2023, 23(4): 194-202, 281.]
[8]王菁,万峰,董春娇,等.城市轨道交通站点吸引范围及强度建模[J]. 吉林大学学报(工学版), 2023,53(2): 439-447. [WANG J, WAN F, DONG C J, et al.
Modelling on catchment area and attraction intensity of
urban rail transit stations[J]. Journal of Jilin University
(Engineering and Technology Edition), 2023, 53(2): 439
447.]
[9]SHEN P, OUYANG L, WANG C, et al. Cluster and
characteristic analysis of Shanghai metro stations based
on metro card and land-use data[J]. Geo-spatial
Information Science, 2020, 23(4): 352-361.
[10]ZHAO L, SONG Y, ZHANG C, et al. T-GCN: A temporal
graph convolutional network for traffic prediction[J].
IEEE Transactions on Intelligent Transportation
Systems, 2019, 21(9): 3848-3858.
[11]HUA Y, ZHAO Z, LI R, et al. Deep learning with long
short-term memory for time series prediction[J]. IEEE
Communications Magazine, 2019, 57(6): 114-119.
[12]张金雷, 陈奕洁,PANCHAMYK, 等.基于注意力机制的城市轨道交通网络级多步短时客流时空综合预测模型[J]. 地球信息科学学报, 2023, 25(4): 698-713.
[ZHANG J L, CHEN Y J, PANCHAMY K, et al.
Attention-based multi-step short-term passenger flow
spatial-temporal integrated prediction model in URT
systems[J]. Journal of Geo-information Science, 2023, 25
(4): 698-713.]
[13]JIN M, GUO J, XIE S, et al. Understanding the effect of
built environment on travel behavior at multiple
geographic scales[J]. Transportation Research Record,
2023, 2677(5): 1062-1076.
[14]YANG H, LU Y, WANG J, et al. Understanding post
pandemic metro commuting ridership by considering the
built environment: A quasi-natural experiment in
Wuhan, China[J]. Sustainable Cities and Society, 2023,
96: 104626.
[15]BUI K H N, CHO J, YI H. Spatial-temporal graph neural
network for traffic forecasting: An overview and open
research issues[J]. Applied Intelligence, 2022, 52(3):
2763-2774.
|