交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (1): 44-55.DOI: 10.16097/j.cnki.1009-6744.2025.01.005

• 智能交通系统与信息技术 • 上一篇    下一篇

基于车辆动态行为特征的交通状态识别研究

李熙莹*1,2,卢美燕1,2,何兆成1,2,苏淑妍1,2,庞淑敏1,2   

  1. 1. 中山大学,智能工程学院,广东深圳518107;2.广东省智能交通系统重点实验室,广东深圳518107
  • 收稿日期:2024-10-16 修回日期:2024-11-25 接受日期:2024-12-27 出版日期:2025-02-25 发布日期:2025-02-21
  • 作者简介:李熙莹(1972—),女,陕西西安人,教授,博士。
  • 基金资助:
    国家自然科学基金(U21B2090);广东省基础与应用基础研究基金(2022A1515010361)。

Traffic State Recognition Based on Vehicle Dynamic Behavior Characteristics

LI Xiying*1,2, LU Meiyan1,2, HE Zhaocheng1,2, SU Shuyan1,2, PANG Shumin1,2   

  1. 1. School of Intelligent Systems Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China; 2. Guangdong Provincial Key Laboratory of Intelligent Transportation System, Shenzhen 518107, Guangdong, China
  • Received:2024-10-16 Revised:2024-11-25 Accepted:2024-12-27 Online:2025-02-25 Published:2025-02-21
  • Supported by:
    National Natural Science Foundation of China (U21B2090);Guangdong Basic andApplied Basic Research Foundation (2022A1515010361)。

摘要: 交通状态识别研究对于预防和缓解交通拥堵具有重要的研究价值,不仅能够为交通管理提供决策支持,还能有效提升道路的运行效率。传统的交通状态识别方法仅考虑单一的宏观特征参数,忽视车辆变道行为的影响以及由此产生的车辆间相互干扰,导致状态划分空间粒度较粗,状态辨识不够精细化,难以深入分析交通拥堵的成因。对此,本文提出一种无人机视角下基于车辆动态行为特征的交通状态识别方法。首先,该方法结合基于旋转检测框的车辆检测算法(YOLOv8s-OBB)和车辆跟踪算法(BoTSORT)检测和跟踪车辆,解决水平框中背景像素冗余以及车辆框重叠的问题,提取车辆空间方向角和旋转4点坐标等更精准的车辆轨迹数据,并计算微观交通流参数;其次,利用获取的车辆空间方向角和旋转位置信息提出车辆动态行为特征参数,即变道干扰率和车辆方向波动指数;然后,结合宏观的平均速度和交通密度参数,构建多维状态特征空间,应用于实际道路场景的交通状态识别。最终实验结果表明:在旋转车辆目标检测中,该方法的mAP@0.5达到0.987,输出的车辆轨迹数据稳定且连续;在交通状态识别中,在平均速度和交通密度作为宏观特征参数的基础上引入变道干扰率后,状态识别精确度达到0.983;进一步,引入车辆方向波动指数后,状态识别精确度达到0.987。同时,根据状态特征空间表征,可以更加精准地将交通状态划分为4种状态,即畅通态、平稳态、拥挤态和堵塞态,从而可以为车辆动态行为定量化分析交通状态影响,为基于无人机视角的交通状态识别提供新的理论参考,为智能交通系统提供先进的状态精细感知。

关键词: 城市交通, 交通状态识别, 车辆动态行为特征参数, 旋转车辆检测与跟踪, 无人机航拍

Abstract: Traffic state recognition research is of great significance for the prevention and mitigation of traffic congestion. It provides decision support for traffic management and also effectively enhances the operational efficiency of roads. Traditional traffic state identification methods typically take into account one single macroscopic characteristic parameter, while overlooking the impact of vehicle lane-changing behaviors and the consequent mutual interference among vehicles. This leads to a relatively coarse granularity in the state division space and insufficient refinement in state identification, thereby hindering in-depth analysis of traffic congestion causes. In response to this, this study proposes a traffic state identification method based on vehicle dynamic behavior characteristics from an Unmanned Aerial Vehicle (UAV) perspective. Firstly, the method combines a vehicle detection algorithm (YOLOv8-OBB) based on rotated bounding boxes and a vehicle tracking algorithm (BoTSORT) to detect and track vehicles, addressing redundant background pixels and overlapping vehicle bounding boxes within horizontal bounding boxes, extract more accurate vehicle trajectory data such as vehicle spatial direction angle and four-point rotation coordinates, and calculate microscopic traffic flow parameters. Secondly, by utilizing the obtained vehicle driving direction angles and rotated position information, this study proposes vehicle dynamic behavior characteristics parameters: lane change interference rate and vehicle direction fluctuation index. Combined with macroscopic average speed and traffic density parameters, a multi-dimensional state feature space is constructed and applied to traffic state identification in actual road scenes. The ultimate experimental results demonstrate that the method achieved an mAP@0.5 of 0.987 in the rotated vehicle detection, with stable and continuous vehicle trajectory data output. In traffic state recognition, by introducing the lane change interference rate based on the average speed and traffic density as macroscopic feature parameters, the state recognition precision reached 0.983. Moreover, incorporating the direction fluctuation index, the state recognition precision reached 0.987. Additionally, according to the state characteristic space representation, the traffic state enables accurate classification into four states: smooth state, steady state, crowded state, and blocked state. This allows for quantitative analysis of the impact of vehicle dynamic behavior on traffic state, and provides novel theoretical insights for traffic state recognition from a UAV perspective, offering advanced fine-grained perception capabilities for intelligent transportation systems

Key words: urban traffic, traffic state recognition, vehicle dynamic behavior characteristics parameters, rotated vehicle detection and tracking, UAV aerial photography

中图分类号: