|
[1]秦昆,罗萍,姚博睿.GDELT数据网络化挖掘与国际关系分析[J]. 地球信息科学学报,2019,21(1): 14-24.
[QIN K, LUO P, YAO B R. Network mining of GDELT
data and international relations analysis[J]. Journal of
Geo-information Science, 2019, 21(1): 14-24.]
[2]ALAMRO R, MCCARREN A, AL-RASHEED A.
Predicting saudi stock market index by incorporating
gdelt using multivariate time series modelling[C]//
International Conference on Computing, Cham: Springer
International Publishing, 2019: 317-328.
[3]OWUOR I, HOCHMAIR H H. Temporal relationship
between daily reports of COVID-19 infections and
related GDELT and tweet mentions[J]. Geographies
2023, 3: 584-609.
[4]QIAO F, LI P, DENG J, et al. Graph-based method for
detecting occupy protest events using GDELT dataset
[C]. Xi'an: 2015 International Conference on Cyber
Enabled Distributed Computing and Knowledge
Discovery, 2015.
[5]KUPILIK M, WITMER F. Spatio-temporal violent event
prediction using Gaussian process regression[J]. Journal
of Computational Social Science, 2018, 1(2): 437-451.
[6]陈科第.基于频繁子图模式挖掘的群体性抗议事件检
测技术研究[D]. 长沙: 国防科学技术大学, 2016.
[CHEN K D. Research on crowd protest event detection
technology based on frequent subgraph pattern mining
[D].
Changsha: National University of Defense
Technology, 2016.]
[7]ELSHENDY M, COLLADON A F, BATTISTONI E, et al.
Using four different online media sources to forecast the
crude oil price[J]. Journal of Information Science, 2018,
44(3): 408-421.
[8]BOK B, CARATELLI D, GIANNONE D, et al.
Macroeconomic nowcasting and forecasting with big data
[J]. Annual Review of Economics, 2018, 10(1): 615-643.
[9]
IACOBESCU P, SUSNEA I. Hybrid ARIMA-ANN for
crime risk forecasting: Enhancing interpretability and
predictive
accuracy through socioeconomic and
environmental indicators[J]. Algorithms, 2025, 18(8):
470.
[10] PARK M J, YANG H S. Comparative study of time series
analysis algorithms suitable for Short-Term Forecasting
in implementing demand response based on AMI[J].
Sensors, 2024, 24(22): 7205.
[11] 段宗涛, 张凯, 杨云,等.基于深度CNN-LSTM-ResNet
组合模型的出租车需求预测[J].交通运输系统工程与信息, 2018, 18(4): 215-223. [DUAN Z T, ZHANG K,
YANG Y, et al. Taxi demand prediction based on CNN
LSTM-ResNet Hybrid Depth Learning Model[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2018, 18(4): 215-223.]
[12] 金盛,周梦涛,白聪聪.多源数据驱动的隧道场景驾驶员识别方法[J]. 交通运输系统工程与信息,
2024, 24(4): 81-93. [JIN S, ZHOU M T, BAI C C. Driver
identification method in tunnel scenarios based on multi
source data[J]. Journal of Transportation Systems
Engineering and Information Technology, 2024, 24(4):
81-93.]
[13] 沈石, 宋长青,程昌秀,等.GDELT:感知全球社会动态的事件大数据[J]. 世界地理研究,2020, 29(1): 71-76.
[SHEN S, SONG C Q, CHENG C X, et al. GDELT: Big
event data for sensing global social dynamics[J]. World
Regional Studies, 2020, 29(1): 71-76.]
[14] 张秀玲, 张逞逞, 周凯旋. 基于感兴趣区域的CNN
Squeeze交通标志图像识别[J].交通运输系统工程与信息, 2019, 19(3): 48-53. [ZHANG X L, ZHANG C C,
ZHOU K X. Traffic sign image recognition via CNN
Squeeze based on region of interest[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2019, 19(3): 48-53.]
[15] SUN X, ZHOU C, FENG J, et al. Research on short-term
forecasting model of global atmospheric temperature and
wind in the near space based on deep learning[J].
Atmosphere, 2024, 15(9): 1069.
[16] 中国民用航空总局.民用航空预先飞行计划管理办法[Z]. 民航总局令第166号, 2006-05-03. [Civil Aviation
Administration of China. Measures for the management
of pre-flight plans for civil aviation[Z]. CAAC Decree No.
166, Promulgated April 3, 2006; effective May 3, 2006.]
|