交通运输系统工程与信息 ›› 2009, Vol. 9 ›› Issue (4): 97-102 .

• 系统工程理论与方法 • 上一篇    下一篇

活动-出行决策行为与TDM策略互动关系研究的贝叶斯方法

隽志才1,2;宗芳*2;栾琨2   

  1. 1. 上海交通大学 安泰经济与管理学院,上海200052;2. 吉林大学 交通学院,长春 130025
  • 收稿日期:2008-12-12 修回日期:2009-03-07 出版日期:2009-08-25 发布日期:2009-08-25
  • 通讯作者: 宗芳
  • 作者简介:隽志才(1954-),男,吉林省公主岭市人,教授、博士生导师.
  • 基金资助:

    国家自然科学基金资助项目(50878129);教育部博士点基金-新教师基金(200801831088)

Application of Bayesian Method in Analysis of Interactions between Activity-travel Decision Behavior and TDM Policy

JUAN Zhi-cai 1,2;ZONG Fang2; LUAN Kun2   

  1. 1. Antai College of Economics and Management, Shanghai Jiaotong University, Shanghai 200052, China;
    2. Transportation College, Jilin University, Changchun 130025, China
  • Received:2008-12-12 Revised:2009-03-07 Online:2009-08-25 Published:2009-08-25
  • Contact: ZONG Fang

摘要: 综合评述了活动-出行行为研究方法和存在的问题,引入贝叶斯结构学习和参数估计方法,辅以基于活动的出行行为分析理论、非集计建模方法和SP/RP数据融合方法,提出了基于贝叶斯结构学习和参数估计方法的出行行为与TDM策略互动关系分析方法的框架,探索了改进已有研究方法的途径。研究表明,贝叶斯理论可以将居民的个人属性及隐性非样本信息在出行行为预测中充分表达,并解决MNP等复杂非集计模型的参数标定问题。将贝叶斯理论与已有的出行行为分析方法相结合,可以使出行行为预测更为精确、全面和灵活,从而更加准确地描述活动-出行决策行为与TDM策略的互动响应关系,为制定有效的TDM策略,缓解城市交通供需矛盾提供理论依据。

关键词: 贝叶斯方法, 活动, 出行行为, 交通需求管理, 马尔可夫链蒙特卡罗仿真

Abstract: This paper reviews the research methods of activity-travel behavior and the existing problems. By introducing Bayesian structuralized learning and parameter estimation methods, assisted by activity-based travel behavior theory, disaggregate modeling, and SP/RP data investigation method, this paper establishes an analysis framework of the interactions between travel behavior and TDM strategy, and discusses the way to improve the existing methods. It indicates that Bayesian method can fully express individual attributes and recessive non-sample information in travel behavior forecasting, and estimate some complex disaggregate models, such as MNP (muti-nomial probit). Combined with existing travel behavior analysis methods, Bayesian method makes travel behavior forecasting more accurate, comprehensive, and flexible. It can also describe interactions between activity-travel decision behavior and TDM strategy more exactly, provide theoretical basis for establishing effective TDM strategy, and alleviate contradiction of urban traffic supply and demand.

Key words: Bayesian method, activity, travel behavior, traffic demand management (TDM), Markov chain Monte Carlo simulation

中图分类号: