交通运输系统工程与信息 ›› 2012, Vol. 12 ›› Issue (1): 91-97.

• 系统工程理论与方法 • 上一篇    下一篇

面向交通信息采集的无人飞机路径规划

刘晓锋,彭仲仁*,张立业,李立   

  1. 同济大学 道路与交通工程教育部重点实验室,上海 201804
  • 收稿日期:2011-11-04 修回日期:2011-12-23 出版日期:2012-02-25 发布日期:2012-03-06
  • 作者简介:刘晓锋(1981-),男,湖北阳新人,博士生.
  • 基金资助:

    国家863计划项目(2009AA11Z220) .

Unmanned Aerial Vehicle Route Planning for Traffic Information Collection

LIU Xiao-feng, PENG Zhong-ren, ZHANG Li-ye, LI Li   

  1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai 201804, China
  • Received:2011-11-04 Revised:2011-12-23 Online:2012-02-25 Published:2012-03-06

摘要: 引入无人飞机作为城市道路固定交通检测设备的辅助手段,部署无人飞机进行道路交通信息采集,提出了无人飞机的路径规划问题.考虑了无人飞机数量有限,不足以对所有目标进行侦察的情形,建立了以总巡航距离最短、巡航目标数量最多的多目标优化模型,提出了可行路径的重组方法,构造了求解该问题的非支配排序遗传算法.案例分析结果表明:构造的算法可以求出无人飞机路径规划的近似最优解,与最优初始可行解相比,总巡航距离减少了13.07%,巡航目标数量增加了41.67%.最后,讨论了无人飞机在道路交通信息采集中可能面临的问题.

关键词: 智能交通, 无人飞机路径规划, 多目标优化, 交通信息采集, 优化算法

Abstract: In this paper, the unmanned aerial vehicle (UAV) route planning problem is introduced to deploy the UAV for road traffic information collection. The scenario of using limited UAVs to detect road sections is considered, and a multi-objective optimization model is developed, which uses the number of the UAVs and UAV maximum cruise distance as constraints and aims to minimize the total cruise distance and maximize the number of detected road sections. A novel non-dominated sorting genetic algorithm for this problem is then proposed. The case study shows that the nearly optimal solution for planning UAV routes can be acquired effectively. Compared the obtained solution with the optimal feasible solution, the total cruise distance is reduced by 13.07% and the number of detected targets is increased by 41.67%. Finally, some issues on deploying UAVs for traffic information collection are discussed.

Key words: intelligent transportation, UAV route planning, multiobjective optimization, traffic information collection, optimization algorithm

中图分类号: