[1]Bittanti S. Time series and linear systems[M]. Berlin: SpringerVerlag, 1986.
[2]Bishop C M. Neural networks for pattern recognition[M]. Oxford, New York: Oxford University Press, XVII, 1995:482.
[3]Mussone L. A review of feedforward neural networks in transportation research[M]. E&I, 6/1999, SpringerVerlag, 1999:360-365.
[4]Gong Z. Estimating the urban OD matrix: A neural network approach[J]. European Journal of Operational Research 106, 1998:108-115.
[5]Van Zuylen H J, Willumsen L G. The most likely trip matrix estimated from traffic counts[J]. Transpn. Res. B, 1980, 14: 281-293.
[6]Fisk C S. On combined maximum entropy trip matrix estimation with user optimal assignment[J]. Transpn. Res. B, 1988, 22: 66-79.
[7]Florian M, Chen Y. A coordinate descent method for the bilevel OD matrix adjustment problem[J].Int. Trans. Opl. Res. 2(2):165-179.
[8]Cascetta E. Estimation of trip matrices from traffic counts and survey data: a generalized least squares estimators[J]. Transpn. Res, B, 1984,18: 289-299.
[9]Bell M G H. The estimation origindestination matrices by constrained generalized least squares[J].Transpn. Res. B, 1991, 25: 115-125.
[10] Cascetta E, Nguyen S. A unified framework for estimating or updating origin/destination matrices from traffic counts[J]. Transpn. Res. B, 1988, 22: 437-455.
[11]Van der Zijpp N. Dynamic origindestination matrix estimation on motorway networks[D]. Department of Civil Engineering, Delft University of Technology, Delft, The Netherlands, 1996.
[12]Chang G L, Wu J. Recursive estimation of timevarying OD flows from traffic counts in freeway corridors[J]. Transportation Res. B, 1994, 28(8): 141-160.
[13]Okutani I. The Kalman filtering approaches in some transportation and traffic problems[C]//N. H. Gartner, N. H. M. Wilson (Eds.), Transportation and Traffic Theory. Elsevier, New Yorkand Proc. Tenth Int. Symposium Transp. and Traffic Theory. July 810. MIT, Cambridge, MA, 1987:397-416.
[14]Ashok K, BenAkiva M E. Dynamic origindestination matrix estimation and prediction for realtime traffic management systems[C]//Daganzo, C.F. (Ed.), Transportation and Traffic Theory. Elsevier, Amsterdam, 1993.
[15]Bierlaire M, Crittin F. An efficient algorithm for realtime estimation and prediction of dynamic od tables[J]. Operations Research, 2004, 52(1): 116-127.
[16]Ashok K, BenAkiva M. Estimation and prediction of timedependent origindestination flows with stochastic mapping to path flows and link flows[J]. Transportation Sci, 2002, 36(2): 184-198.
[17]Chang G L, Tao X. An integrated model for estimating timevarying network origindestination distributions[J]. Transportation Res, A 1999, 33: 381-399.
[18]Van Aerde M, Rakha H, Paramahamsan H. Estimation of origindestination matrices: Relationship between practical and theoretical considerations (conference paper )[J]. Transportation Research Record, 1831, 2003:122-130.
[19]Yang H, Akiyama T, Sasaki T. A neural network approach to the identification of real time origindestination from traffic counts[J]. In Proceedings of the International Conference on Artificial Intelligence Application in Transportation Engineering, 1992:253-269.
[20]Yang H, Akiyama T, Sasaki T. Estimation of timevarying origindestination flows from traffic counts: A neural network approach[J]. Mathematical and Computer Modeling, 1998, 27(9-11):323-334.
[21]Kikuchi S, Tanaka M. Estimating an origindestination table under repeated counts of inout volumes at highway ramps: use of artificial neural networks[J]. Transportation Research Record, 1739, 2000:59-66.
[22]Bifulco G N.Road transport systems in information society (in Italian) [M]. Aracne: Roma, Italy, 2004.
[23]Montgomery D C, Peck E A. Introduction to linear regression analysis[M]. New York, NY: John Wiley & Sons, 1992.
[24]Scott D W. Multivariate density estimation[M]. New York: Wiley, 1992.
[25]Lebart L, Morineau A, Tabard N. Techniques de la description statistique: méthodes et logiciels pour l’analyse des grands tableaux[M]. Paris: Dunod, 1977.
[26]Matteucci M, Spadoni D. Evolutionary learning of rich neural networks in the Bayesian model selection framework[J]. Int. J. Appl. Math. Comput. Sci., 2004, 14(3): 423-440. |