交通运输系统工程与信息 ›› 2014, Vol. 14 ›› Issue (5): 100-104.

• 系统工程理论与方法 • 上一篇    下一篇

轨道交通乘客个性化出行路径规划算法

刘莎莎a,b,姚恩建* a,c,张永生a   

  1. 北京交通大学a. 交通运输学院; b.城市交通复杂系统理论与技术教育部重点实验室; c.北京城市交通协同创新中心,北京100044
  • 收稿日期:2014-03-07 修回日期:2014-06-29 出版日期:2014-10-25 发布日期:2014-12-17
  • 作者简介:刘莎莎(1990-),女,山东德州人,博士生.
  • 基金资助:

    国家科技支撑计划(2011BAG01B01);中央高校基本科研业务费专项基金(2013YJS043).

Personalized Route Planning Algorithm for Urban Rail Transit Passengers

LIU Sha-shaa,b, YAO En-jiana,c, ZHANG Yong-shenga   

  1. a. School of Traffic and Transportation; b. MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology; c. Center of Cooperative Innovation for Beijing Metropolitan Transportation, Beijing Jiaotong University, Beijing 100044, China
  • Received:2014-03-07 Revised:2014-06-29 Online:2014-10-25 Published:2014-12-17

摘要:

随着城市轨道交通网络的不断完善,可供乘客选择的轨道交通出行路径日益 增加,乘客出行路径决策愈加复杂.本文在分析轨道交通服务水平变量对不同属性乘客出 行路径选择行为影响的基础上,提出轨道交通乘客个性化出行路径规划算法.首先,基于 非集计理论构建针对不同类别乘客的路径选择模型,该模型综合考虑乘车时间、换乘时 间、换乘次数、车内拥挤度及个人属性等因素对乘客路径选择行为的影响.其次,基于不同 类别乘客的路径选择行为差异,构建考虑车内拥挤度变化的乘客个性化出行路径动态规 划算法,为不同属性乘客规划广义出行时间最小的路径.最后,基于广州地铁数据对算法 进行验证.结果表明,该算法针对乘客个人属性规划的最优出行路径,更加贴合乘客的出 行心理.

关键词: 城市交通, 路径规划, 路径选择行为分析, 个性化, 车内拥挤度

Abstract:

With the rapid development of urban rail transit network, increased available routes make passengers’trip decision- making become more and more difficult. This study proposes a dynamic metro route planning algorithm with the least generalized cost, in which network LOS variables and personal characteristics are taken into consideration. Firstly, based on the disaggregate choice theory, the metro route choice models for different types of passengers are established with the consideration of LOS variables (e.g. in- vehicle travel time, transfer time, number of transfers, in- vehicle passenger density, etc.) and personal characteristics (e.g. age, trip purpose, etc.). Then, based on the proposed models and the time-varied sectional flow volume, a dynamic personalized route planning algorithm is proposed, which is expected to generate the optimal route with the least generalized time for each type of passengers. Finally, the proposed algorithm is evaluated in Guangzhou Metro conditions. The results indicate that the algorithm can provide passengers with the more reasonable route corresponding with their characteristics, and expresses passenger’s route choice preference more precisely.

Key words: urban traffic, route planning, route choice behavior analysis, personalized, in-vehicle passenger density

中图分类号: