交通运输系统工程与信息 ›› 2016, Vol. 16 ›› Issue (4): 191-198.

• 系统工程理论与方法 • 上一篇    下一篇

基于多维时间序列的ETC 短时交通流量预测模型

赵亚伟*1,陈艳晶1,管伟2   

  1. 1. 中国科学院大学大数据分析技术实验室,北京100049;2. 北京速通科技有限公司,北京100161
  • 收稿日期:2016-01-24 修回日期:2016-03-23 出版日期:2016-08-25 发布日期:2016-08-26
  • 作者简介:赵亚伟(1969-),男,内蒙海拉尔人,副教授,博士.
  • 基金资助:

    国家自然科学基金/ National Natural Science Foundation of China(61072091).

Prediction Model of ETC Short Term Traffic Flow Based on Multidimensional Time Series

ZHAO Ya-wei1, CHEN Yan-jing1, GUANWei2   

  1. 1. Big Data Analysis Technology Lab, University of Chinese Academy of Sciences, Beijing 100049, China;2. Beijing Sutong Technology Co., Ltd.,Beijing 100161, China
  • Received:2016-01-24 Revised:2016-03-23 Online:2016-08-25 Published:2016-08-26

摘要:

ETC短时交通流量预测是高速公路ETC管理的基础,准确的交通流量预测为交通枢纽管理方案设计与ETC车道的建设规划等提供指导.目前关于短时交通流量的研究很多,但多数是以数学表达式的形式进行模型表示,很难进行准确的趋势描述.本文基于多维时间序列的ETC短时交通流量预测模型,考虑了法定节假日、高速公路免费和天气等外界因素对ETC交通流量的影响,并结合某地尾号限行的特殊性,考虑“周几”因素,以某高速公路ETC车道交通流量数据为基础,进行预测.预测结果显示,该模型预测结果总体平均绝对相对误差为8.10%,表明该模型具有较强的实用性.

关键词: 智能交通, 交通流量预测, 多维时间序列模型, 电子不停车收费, 相似性度量

Abstract:

ETC short term traffic flow prediction is one of the fundamental processes in ETC management. The precise prediction of traffic flow provides instructions for transportation hub management solution planning and ETC lane construction. At present, some of studies are proposed in forecasting short term traffic flow. However, most studies of model presentation are in the form of mathematical expressions, and it is difficult to describe the trend accurately. Therefore, an ETC short term traffic flow prediction model based on multidimensional time series is proposed, which takes the effect of external factors like holiday, the free of highway and weather etc. into consideration. Moreover, considering the fact of the traffic restrictions based on the last digit of license plate numbers somewhere, the day of week factor is considered in this prediction model. The traffic flow data of highway ETC lane somewhere is used for prediction. The prediction results indicate that the total average absolute relative error is 8.10%. The accuracy suggests its advantage in traffic flow prediction and on site application.

Key words: intelligent transportation, traffic flow prediction, multidimensional time series model, electronic toll collection (ETC), similarity measure

中图分类号: