[1] 吕红霞,王文宪,蒲松,等. 基于聚类分析的铁路出 行旅客类别划分[J]. 交通运输系统工程与信息, 2016,16(1):129-134. [LV H X, WANG W X, PU S, et al. Classification of railway passengers based on cluster analysis[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(1): 129-134.]
[2] 史峰,邓连波,霍亮. 铁路旅客乘车选择行为及其效用[J]. 中国铁道科学, 2007, 28(6): 117-121. [SHI F, DENG L B, HUO L. Boarding choice behavior and its utility of railway passengers[J]. China Railway Science, 2007, 28(6): 117-121.]
[3] TSAI C Y, CHIU C C. A purchase-based market segmentation methodology[J]. Expert Systems with Applications, 2004, 27(2): 265-276.
[4] BAGCHI M, WHITE P R. The potential of public transport smart card data[J]. Transportation Policy, 2005, 12(5): 464-474.
[5] PELLETIER M, TRÉPANIER M, MORENCY C. Smart card data use in public transit: a literature review[J]. Transportation Research Part C: Emerging Technologies. 2011, 19(4): 557-568.
[6] LE M K, BHASKAR A, CHUNG E. Passenger segmentation using smart card data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1537-1548.
[7] VENUGOPAL S, DIVYA D. Transit passenger segmentation based on the travel patterns mined from smart card data using Optics algorithm[J]. International Journal of Advanced Information Science and Technology, 2016, 5(5): 49-56.
[8] 张文欣. 航空公司常旅客细分研究[D]. 南京: 南京航空航天大学, 2009. [ZHANG W X. Research on frequent flyer segmentation of airlines[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.]
[9] ZOU Q, YAO X, ZHAO P, et al. Detecting home location and trip purposes for cardholders by mining smart card transaction data in Beijing subway[J]. Transportation, 2016: 1-26.
[10] 姚向明,赵鹏,韩宝明,等. 基于售检票数据挖掘的轨道交通乘客居住区辨识[J]. 交通运输系统工程与信息, 2016, 16(5): 233-240. [YAO X M, ZHAO P, HAN B M, et al. Home district identification for urban rail transit travelers by mining automatic fare collection data[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(5): 233-240.] |