[1] MA X, LIU C, WEN H, et al. Understanding commuting patterns using transit smart card data[J]. Journal of Transport Geography, 2017(58): 135-145.
[2] 曲昭伟, 王鑫, 宋现敏, 等. 基于出租车GPS大数据的城市热点出行路段识别方法[J]. 交通运输系统工程与信息, 2019, 19(2): 238- 246. [QU Z W, WANG X, SONG X M, et al. Urban hotspot travel section identification methodbased on taxi GPS large data[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 238-246.]
[3] CALABRESE F, READES J, RATTI C. Eigenplaces: Segmenting space through digital signatures[J]. Ieee Pervas Comput, 2010, 9(1): 78-84.
[4] JAMIL M S, AKBAR S. Taxi passenger hotspot prediction using automatic ARIMA model[C]. 2017 3rd International Conference on Science in Information Technology. Bandung, Indonesia, IEEE, 2017.
[5] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data [J]. Ieee T Intell Transp, 2013, 14(3): 1393-1402.
[6] LI Y, LU J, ZHANG L, et al. Taxi booking mobile app order demand prediction based on short-term traffic forecasting[J]. Transportation Research Record, 2017, 2634(1): 57-68.
[7] MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015(54): 187-197.
[8] JIANG S, CHEN W, LI Z, et al. Short- term demand prediction method for online car-hailing services based on a least squares support vector machine[J]. IEEE Access, 2019, DOI: 10.1109/ACCESS.2019.2891825.
[9] 谷远利, 李萌, 芮小平, 等. 基于深度学习的网约车供需缺口短时预测研究[J]. 交通运输系统工程与信息, 2019, 19(2): 223-230. [GU Y L, LI M, RUI X P, et al. Short- term forecasting of supply- demand gap under online car- hailing services based on deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 223-230.]
[10] 郭宪, 沈吟东. 基于梯度提升回归树的网约出租车需求预测[C]. 2018 世界交通运输大会,北京,2018. [GUO X, SHEN Y D. Prediction for e-hail taxi demands based on gradient boosting regression trees[C]. 2018 World Transport Convention, Beijing, China, 2018.]
[11] HEINRICH G. Parameter Estimation for Text Analysis [R]. Darmstadt, Germany, 2005.
[12] Matsubara Y, SakuraiY, FaloutsosC, et al. Fast mining and forecasting of complex time-stamped events[C]. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Beijing, China, 2012.
[13] YUAN N J, ZHENG Y, XIE X, et al. Discovering urban functional zones using latent activity trajectories[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3): 712-725. |