[1] KAMARIANAKIS Y, VOUTON V. Forecasting traffic flow conditions in an urban network: Comparison of multivariate and univariate approaches[J]. Transportation Research Record, 2003, 1857(1): 74-84.
[2] 赵亚伟, 陈艳晶, 管伟. 基于多维时间序列的ETC短时交通量预测模型[J]. 交 通 运 输 系 统 工 程 与 信 息, 2016, 16(4): 191-198. [ZHAO Y W, CHEN Y J, GUAN W. Prediction model of ETC short term traffic flow based on multidimensional time series[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(4): 191-198.]
[3] XU Y Y, CHEN H, KONG Q J, et al. Urban traffic flow prediction: A spatio-temporal variable selection-based approach[J]. Journal of Advanced Transportation, 2016, 50(4): 489-506.
[4] MA X L, DAI Z, HE Z B, et al. Learning traffic as images: A deep convolutional neural network for large- scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 1-16.
[5] 王祥雪, 许伦辉. 基于深度学习的短时交通流预测研究[J]. 交通运输系统工程与信息, 2018, 18(1): 81-88. [WANG X X, XU L H. Short-term traffic flow prediction based on deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(1): 81-88.]
[6] ZHANG D, KABUKA M R. Combining weather condition data to predict traffic flow: A GRU-based deep learning approach[J]. IET Intelligent Transport Systems, 2018, 12(7): 578-585.
[7] DUAN Z T, ZHANG K, CHEN Z, et al. Prediction of cityscale dynamic taxi origin- destination flows using a hybrid deep neural network combined with travel time [J]. IEEE Access, 2019, 7: 127816-127832.
[8] ZHANG Y R, ZHANG Y L, HAGHANI A. A hybrid short-term traffic flow forecasting method based on spectral analysis and statistical volatility model[J]. Transportation Research Part C, 2014, 43: 65-78.
[9] 罗文慧, 董宝田, 王泽胜. 基于 CNN-SVR 混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68-74. [LUO W H, DONG B T, WANG Z S. Short- term traffic flow prediction based on CNNSVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68-74.]
[10] 张阳, 杨书敏, 辛东嵘. 改进小波包与长短时记忆组合模型的短时交通流预测[J]. 交通运输系统工程与信息, 2020, 20(2): 204-210. [ZHANG Y, YANG S M, XIN D R. Short- term traffic flow forecast based on improved wavelet packet and long short- term memory combination model[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 204-210.]
[11] MA D F, SHENG B W, JIN S, et al. Short- term traffic flow forecasting by selecting appropriate predictions based on pattern matching[J]. IEEE Access, 2018, 6: 75629-75638. |