[1] 檀甲甲, 张建秋. 实时采集道路车流量信息的视频新方法[J]. 仪器仪表学报, 2008, 29(1): 158-166. [TAN J J, ZHANG J Q. Novel vision-based method for real-time on road vehicle flow information extraction[J]. Chinese Journal of Scientific Instrument, 2008, 29(1): 158-166.]
[2] 齐美彬, 鲜柯, 蒋建国, 等. 一种基于车辆遮挡模型的车流量统计算法[J]. 仪器仪表学报, 2010, 31(6): 1335- 1341. [QI M B, XIAN K, JIANG J G, et al. Traffic flow statistic algorithm of based on block model of vehicle[J]. Chinese Journal of Scientific Instrument, 2010, 31(6): 1335-1341.]
[3] PABLO B, CHRISTIANO B, FABIANO L, et al. A novel video based system for detecting and counting vehicles at user- defined virtual loops[J]. Expert Systems with Applications, 2015, 42(4): 1845-1856.
[4] YINGJIE X, XINGMIN S, GUANGHUA S, et al. Towards improving quality of video-based vehicle counting method for traffic flow estimation[J]. Signal Processing, 2016, 120: 672-681.
[5] MAOJIN S, YAN W, TENG L, et al. Vehicle counting in crowded scenes with multi-channel and multi-task convolutional neural networks[J]. Journal of Visual Communication and Image Representation, 2017, 49: 412-419.
[6] HANA R, FOUED S, RAFAA M, et al. A vision- based statistical methodology for automatically modeling continuous urban traffic flows[J]. Advanced Engineering Informatics, 2018, 38: 392-403.
[7] REDMON J, FARHADI A. YOLO9000: Better, faster, stronger[C]. IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2017.
[8] 刘淑芬, 孟冬雪, 王晓燕. 基于网格单元的DBSCAN算 法[J]. 吉林大学学报(工学版), 2014, 44(4): 1135-1139. [LIU S F, MENG D X, WANG X Y. DBSCAN algorithm based on grid cell[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(4): 1135-1139.]
[9] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition [EB/OL]. (2014- 11- 04) [2015- 04- 10]. arXiv preprint arXiv:1409.1556, 2014.
[10] HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(3): 583-596. |