交通运输系统工程与信息 ›› 2021, Vol. 21 ›› Issue (3): 101-111.

• 系统工程理论与方法 • 上一篇    下一篇

考虑多特征的高速公路交通流预测模型

李桃迎*,王婷,张羽琪   

  1. 大连海事大学,航运经济与管理学院,辽宁 大连 116026
  • 收稿日期:2021-03-17 修回日期:2021-04-23 出版日期:2021-06-25 发布日期:2021-06-25
  • 作者简介:李桃迎(1983- ),女,安徽宿州人,教授,博士。
  • 基金资助:

    国家自然科学基金/ National Natural Science Foundation of China(51939001);辽宁省兴辽英才计划 /Liaoning Revitalization Talents Program(XLYC1907084);辽宁省重点研发计划/ Key Research & Development Project in Liaoning Province(2020JH2/10100042)。

Highway Traffic Flow Prediction Model with Multi-features

LI Tao-ying* , WANG Ting, ZHANG Yu-qi   

  1. School of Maritime Economics and Management, Dalian Maritime University, Dalian 116026, Liaoning, China
  • Received:2021-03-17 Revised:2021-04-23 Online:2021-06-25 Published:2021-06-25

摘要:

为准确预测高速公路交通流,缓解高速公路交通拥堵现象,本文提出一种考虑多特征的高速公路交通流预测模型。首先将高速公路当前道路与上下游的交通流、天气等数据转化为一个二维矩阵,并利用滑动窗口模型获得输入样本的最佳长度;然后将样本数据输入集成深度学习模型训练并提取交通流数据的特征,随后输出预测结果;最后,将某高速公路交通流数据用于工作日和节假日两组实验。结果表明:集成深度学习模型比单一模型预测高速公路交通流的效果要好,工作日的高速公路交通流预测精度远高于节假日,本文模型将平均绝对误差由 6.40辆·(20 min)-1 降到5.450辆·(20 min)-1,说明考虑多种因素可以提升高速公路交通流预测精度。

关键词: 公路运输, 交通流预测, 深度学习, 高速公路, 交通拥堵

Abstract:

In order to accurately predict highway traffic flow and thus alleviate traffic congestion of highway, a highway traffic flow prediction model with multi- features is proposed in this paper. Firstly, the traffic flow of the section with the upstream and downstream sections, and the weather data are transformed into a two-dimensional matrix, and the sliding window model is employed to obtain the optimal size of input samples. Then these samples are input into a hybrid depth deep learning model to extract the features of traffic flow data, and then output the prediction results. Finally, the traffic flow data of a real highway is used to do two experiments on weekdays and holidays. The results indicate that the hybrid deep learning models perform better results than single models for forecasting highway traffic flow. The prediction accuracy of highway traffic flow on weekdays is higher than that on holidays. The proposed model reduces the mean absolute error from 6.40 Cars · (20 min)- 1 to 5.450 Cars · (20 min)- 1 , which shows that the prediction accuracy of highway traffic flow can be improved by considering multiple related factors.

Key words: highway transportation, traffic flow prediction, deep learning, highway, traffic congestion

中图分类号: