[1] 陆化普, 孙智源, 屈闻聪. 大数据及其在城市智能交通系统中的应用综述[J]. 交通运输系统工程与信息, 2015, 15(5): 45-52. [LU H P, SUN Z Y, QU W C. Big data and its applications in urban intelligent transportation system[J]. Journal of Transportation Systems Engineering and Information Technology, 2015, 15(5): 45-52. ]
[2] VLAHOGIANNI E I, KARLAFTIS M G, GOLIAS J C. Short- term traffic forecasting: Where we are and where we're going[J]. Transportation Research Part C: Emerging Technologies, 2014, 43: 3-19.
[3] 刘小明, 田玉林, 唐少虎, 等. 基于时延特性建模的多断面短时交通流预测[J]. 交通运输系统工程与信息, 2020, 20(3): 54-60. [LIU X M, TIAN Y L, TANG S H, et al. Short- term traffic flow prediction of multisections based on time-delay modeling[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(3): 54-60.]
[4] LIU Y, ZHENG H, FENG X, et al. Short-term traffic flow prediction with Conv-LSTM[C]//2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), IEEE, 2017: 1-6.
[5] 冯宁, 郭晟楠, 宋超, 等. 面向交通流量预测的多组件时空图卷积网络[J]. 软件学报, 2019, 30(3): 759-769. [FENG N, GUO S N, SONG C, et al. Multi- component spatial-temporal graph convolution networks for traffic flow forecasting[J]. Journal of Software, 2019, 30(3): 759- 769. ]
[6] GUO S, LIN Y, FENG N, et al. Attention based spatialtemporal graph convolutional networks for traffic flow forecasting[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 922-929.
[7] 胡启洲, 孙煦. 基于多维联系数的城市路网交通拥堵态势监控模型[J]. 中国公路学报, 2013, 26(6): 143- 149. [HU Q Z, SUN X. Model for traffic congestion state monitor in urban road network based on multi-dimension connection number[J]. China Journal of Highway and Transport, 2013, 26(6): 143-149. ]
[8] MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197.
[9] MA X, DAI Z, HE Z, et al. Learning traffic as images: Adeep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 81.
[10] LIU Q, WANG B, ZHU Y. Short- term traffic speed forecasting based on attention convolutional neural network for arterials[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(11): 999-1016.
[11] ZHAO L, SONG Y, ZHANG C, et al. T-gcn: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(9): 3848-3858.
[12] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[13] ZHAO R, WANG D, YAN R, et al. Machine health monitoring using local feature-based gated recurrent unit networks[J]. IEEE Transactions on Industrial Electronics, 2017, 65(2): 1539-1548.
[14] 滴滴出行科技有限公司. 滴滴出行“盖亚”数据开放计划 [EB/OL]. (2019- 10- 19) [2021- 01- 24]. https://gaia. didichuxing.com. [Didi Technology Co, Ltd. Data source: Didi Chuxing GAIA initiative[EB/OL]. (2019- 10- 19) [2021-01-24]. https://gaia.didichuxing.com.]
[15] CHEN C, PETTY K, SKABARDONIS A, et al. Freeway performance measurement system: Mining loop detector data[J]. Transportation Research Record, 2001, 1748(1): 96-102. |