[1] YAMAMOTO S, KURASHIMA T, TODA H. Classifying
near-miss traffic incidents through video, sensor, and
object features[J]. IEICE Transactions on Information
and Systems, 2022, 105(2): 377-386.
[2] PAN Q, ZHANG H. Key algorithms of video target
detection and recognition in intelligent transportation
systems[J]. International Journal of Pattern Recognition
and Artificial Intelligence, 2020, 34(9): 2055016.
[3] CAO N, HUO W, LIN T, et al. Application of
convolutional neural networks and image processing
algorithms based on traffic video in vehicle taillight
detection[J]. International Journal of Sensor Networks,
2021, 35(3): 181-192.
[4] LIU L. Refined judgment of urban traffic state based on
machine learning and edge computing[J]. Journal of
Advanced Transportation, 2022, 7(1): 7593772.
[5] LU J, ZHANG X, XU Z, et al. Traffic index prediction
and classification considering characteristics of time
series based on autoregressive integrated moving average
convolutional neural network model[J]. Sensors and
Materials, 2020, 32(11): 3955-3973.
[6] 赵志远, 黄永刚, 吴升, 等. 基于时空热点分析的城市交通违法行为特征识别方法[J]. 地球信息科学学报, 2022, 24(7): 1312-1325. [ZHAO Z Y, HUANG Y
G, WU S, et al. Study on the method of identifying the
characteristics of the traffic violation behavior based on
the spatial and temporal hotspot analysis approach[J].
Journal of Geo-information Science, 2022, 24(7): 1312-
1325.]
[7] 陈鼎, 周水庭, 陈云, 等. 拥堵指数自适应调节的交通运行状态识别方法及应用研究[J]. 交通运输系统工程与信息, 2022, 22(2): 137-144. [CHEN D, ZHOU S T,
CHEN Y, et al. Traffic performance identification
method based on adaptive congestion index[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2022, 22(2): 137-144.]
[8] 曹堉, 王成, 杨岳铭, 等. 基于贝叶斯网络的城市道路交通拥堵多原因自动实时识别[J]. 公路交通科技,
2020, 37(11): 89-97. [CAO Y, WANG C, YANG Y
M, et al. Multi-cause automatic real-time recognition
of urban road traffic congestion based on bayesian
network[J]. Journal of Highway and Transportation
Research and Development, 2020, 37(11): 89-97.]
[9] 孙然然, 张静萱, 朱广宇. 基于SVM的危险交通流状态实时识别模型[J]. 公路交通科技, 2021, 38(10): 120-
128. [SUN R R, ZHANG J X, ZHU G Y, et al. A realtime recognition model of dangerous traffic flow state
based on SVM[J]. Journal of Highway and Transportation
Research and Development, 2021, 38(10): 120-128.]
[10] 朱秋圳, 邬群勇, 姚铖鑫, 等. 基于 DBI 和稀疏轨迹数据的交通状态精细划分与识别[J]. 地球信息科学学报, 2022, 24(3): 458-468. [ZHU Q Z, WU Q Y, YAO C
X, et al. Fine classification and identification of traffic
states based on DBI and sparse trajectory data[J]. Journal
of Geo-information Science, 2022, 24(3): 458-468.]
[11] 彭波, 张立福, 张鹏, 等. Cholesky分解的逐像元实时高光谱异常探测[J]. 遥感学报, 2017, 21(5): 739- 748.
[PEN B, ZHANG L F, ZHANG P, et al. Real-time sample-wise hyperspectral anomaly detection algorithm
using Cholesky decomposition[J]. Journal of Remote
Sensing, 2017, 21(5): 739-748.]
[12] 万云发, 孙文磊, 王宏伟, 等. 基于 Kriging 模型与MOGA 算法的风力机主轴轻量化设计[J]. 太阳能学报, 2022, 43(3): 388-395. [WAN Y F, SUN W L, WANG
H W, et al. Lightweight design of wind turbine's main
shaft based on kriging model and MOGA algorithm[J].
Acta Energiae Solaris Sinica, 2022, 43(3): 388-395.]
[13] XUE J K, SHEN B. A novel swarm intelligence
optimization approach: sparrow search algorithm[J].
Systems Science & Control Engineering, 2020, 8(1):
22-34.
[14] 徐亚宁, 卢文喜, 王梓博, 等. 考虑参数和边界条件不确定性的地下水污染随机模拟[J]. 中国环境科学,
2022, 42(7): 3244-3253. [XU Y N, LU W X, WANG Z
B, et al. Stochastic simulation of groundwater pollution
considering uncertainty of parameters and boundary
conditions[J]. China Environmental Science, 2022, 42(7):
3244-3253.
|