交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (2): 146-156.DOI: 10.16097/j.cnki.1009-6744.2025.02.014

• 系统工程理论与方法 • 上一篇    下一篇

城市交通拥塞风险场级联失效及韧性评估研究

赵雪亭*1,胡立伟2,周君1   

  1. 1. 淮阴工学院,交通工程学院,江苏淮安223003;2.昆明理工大学,交通工程学院,昆明650500
  • 收稿日期:2024-11-29 修回日期:2024-12-17 接受日期:2024-12-23 出版日期:2025-04-25 发布日期:2025-04-20
  • 作者简介:赵雪亭(1997—),男,山西忻州人,讲师,博士。
  • 基金资助:
    国家自然科学基金 (42277476);云南省基础研究计划重点项目 (202401AS070065);淮阴工学院引进人才科研启动基金 (Z301B24527)。

Cascading Failure and ResilienceAssessment of Urban Traffic Congestion Risk Fields

ZHAO Xueting*1,HU Liwei2,ZHOU Jun1   

  1. 1. Faculty of Transportation Engineering, Huaiyin Institute of Technology, Huaian 223003, Jiangsu, China; 2. Faculty of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2024-11-29 Revised:2024-12-17 Accepted:2024-12-23 Online:2025-04-25 Published:2025-04-20
  • Supported by:
    National Natural Science Foundation of China (42277476);Key Projects of Yunnan Province Basic Research Program (202401AS070065);Scientific Research Start-up Fund for Introduced Talents of Huaiyin Institute of Technology (Z301B24527)。

摘要: 应用信息物理系统,本文对城市交通拥塞风险场级联失效过程及量化评估韧性风险大小问题进行研究。首先,考虑城市交通拥塞风险的多维耦合特征,建立城市交通拥塞风险场真实交通路网和交通拥塞防控类型分区相互耦合的CPS(CyberPhysicalSystems)控制模型,运用复杂网络理论对交通域进行结构特性分析。其次,重新界定CPS特征参数,定义CPS级联失效4个过程,构建城市交通拥塞风险场CPS级联失效模型。然后,以风险因子为介入点,结合网络拓扑结构理论阐述风险扰动机理,通过归一定量化节点连通度、延误时间、平均运行速度和平均拥塞长度等韧性指标检验CPS连通性,采用不同失效-恢复策略,利用鲁棒性、破坏/恢复速率等指标评估CPS受损扰动及韧性恢复能力。案例结果显示:贵阳市城市交通拥塞风险场CPS真实交通网由170个交叉口和231条边构成,交通拥塞防控类型分区网络由21个交通指挥片区和41条边构成。CPS模型最大、最小度值分别为22、1,度值服从幂率分布函数,具备特有无标度网络特征,介数呈现指数分布;度值扰动对贵阳市真实交通路网影响程度最大,介数扰动使贵阳市交通拥塞防控类型分区影响最大。在t=2时刻,网络性能在介数扰动和度值扰动下网络性能均开始下降,介数扰动相较于度值扰动影响性能更大,均在t=7时达到最低。介数恢复效果均优于度值恢复,在介数扰动下,贵阳市真实交通路网的度值恢复和介数恢复效果均差,韧性值分别为0.01123和0.01252,显著低于交通拥塞防控类型分区的韧性值0.1355。综上,本文城市交通拥塞风险场韧性评估模型可有效实现定量化评价,对启动不同阶段交通拥塞控制策略有借鉴意义。

关键词: 城市交通, 级联失效模型, 风险扰动机理, 交通拥塞风险, 控制特性

Abstract: This paper applies the information physics system to analyze the cascading failure process of urban traffic congestion risk field and proposes the quantitative method for toughness risk size assessment. A CPS(Cyber Physical Systems) control model is developed with mutual coupling of real traffic road network, traffic congestion prevention, and control type zoning of urban traffic congestion risk field in consideration of the multidimensional coupling characteristics of urban traffic congestion risk. The structural characteristics of the traffic domain is examined through the complex network theory. The CPS characteristic parameters are redefined, the four processes of CPS cascade failure are defined, and the CPS cascade failure model is developed with urban traffic congestion risk field. The risk factor is defined as the intervention point and the risk perturbation mechanism is elaborated through the network topology theory. The CPS connectivity is examined through the normalized quantitative node connectivity, delay time, average operating speed, average congestion length and other toughness indexes. The CPS damage perturbation and toughness are evaluated by different failure-recovery strategies, the indicators of the robustness, damage/recovery rate, and recovery capability. The results from case studies show that: (1) Guiyang city urban traffic congestion risk field CPS real traffic network consists of 170 intersections and 231 edges, and the traffic congestion prevention and control type zoning network consist of 21 traffic command areas and 41 edges. (2) The maximum and minimum degree value of the CPS model is respectively 22 and 1. The degree value obeys the power rate distribution function, has characteristic scale-free network features, and the mediator shows the exponential distribution. The degree value perturbation has the greatest influence on the real traffic network of Guiyang city, and the mediator perturbation has the greatest influence on the type of sub-districts of Guiyang city's traffic congestion prevention and control. (3) When t=2 , the network performance starts to decline under both meso and degree perturbation, and the meso perturbation affects the performance more than the degree perturbation, and both reach the lowest at t=7 . (4) The median recovery effect is better than the degree value recovery, under the median perturbation, the degree value recovery and median recovery effect of Guiyang city's real traffic network is poor, the toughness value is respectively 0.01123 and 0.01252, which is significantly lower than that of the toughness value of the traffic congestion prevention and control type of partitioning (0.1355). The proposed model provides reference for the quantitative evaluation and initiation of the traffic congestion control strategy at different stages.

Key words: urban traffic, cascading failure model, risk perturbation mechanism, traffic congestion risk, control characteristics

中图分类号: