[1] WANG Y, ZHANG D X, LIU Y, et al. Enhancing
transportation systems via deep learning: A survey[J].
Transportation Research Part C: Emerging Technologies,
2019, 99: 144-163.
[2]
任强.节假日高速公路重点路段交通流预测及其预警研究[D]. 福州: 福建理工大学,2023. [RENQ.Research
on traffic flow prediction and early-warning of key
sections of expressway on holidays[D]. Fuzhou: Fujian
University of Technology, 2023.]
[3]
WANG T, NGODUY D, LI Y, et al. Koopman theory
meets graph convolutional network: Learning the
complex dynamics of non-stationary highway traffic flow
for spatiotemporal prediction[J]. Chaos, Solitons and
Fractals, 2024, 187: 115437.
[4] LU G M, LI J X, CHEN J, et al. A long-term highway
traffic flow prediction method for holiday[C]//Advanced
Multimedia and Ubiquitous Engineering: MUE/
FutureTech 2018 12, Singapore: Springer, 2019: 153
159.
[5] LUO X L, LI D Y, ZHANG S R. Traffic flow prediction
during the holidays based on DFT and SVR[J]. Journal of
Sensors, 2019, 2019(1): 6461450.
[6] HU X W, XIAO Y Z, WANG T L, et al. Traffic volume
forecasting model of freeway toll stations during holidays
an SVM model[J]. Promet-Traffic and Transportation,
2022, 34(3): 499-510.
[7] ATILGAN I, TURKMEN H I, GUVENSAN M A. Traffic
characteristics of short and long public holidays: A
hybrid holiday-oriented speed prediction approach via
feature engineering[J]. IEEE Sensors Journal, 2023, 23
(20): 25016-25025.
[8]
李桃迎,王婷,张羽琪.考虑多特征的高速公路交通流预测模型[J]. 交通运输系统工程与信息,2021,21(3):
101-111. [LI T Y, WANG T, ZHANG Y Q. Highway
traffic flow prediction model with multi-features[J].
Journal of Transportation Systems Engineering and
Information Technology, 2021, 21(3): 101-111.]
[9]
CHEN M Y, CHIANG H S, YANG K J. Constructing
cooperative intelligent transport systems for travel time
prediction with deep learning approaches[J]. IEEE
Transactions on Intelligent Transportation Systems,
2022, 23(9): 16590-16599.
[10] HO J, JAIN A, ABBEEL P. Denoising diffusion
probabilistic models[J]. Advances in Neural Information
Processing Systems, 2020, 33: 6840-6851.
[11] LUO C. Understanding diffusion models: A unified
perspective[J]. arXiv Preprint arXiv:2208.11970, 2022.
[12] PEEBLES W, XIE S. Scalable diffusion models with
transformers[C]//Proceedings
of
the
IEEE/CVF
International Conference on Computer Vision, Paris:
IEEE, 2023: 4195-4205.
[13] BI K F, XIE L X, ZHANG H H, et al. Accurate medium
range global weather forecasting with 3D neural networks
[J]. Nature, 2023, 619(7970): 533-538.
[14] VASWANI A, SHAZEER N, PARMAR N, et al.
Attention is all you need[C]//Proceedings of the 31st
International
Conference on Neural Information
Processing Systems, Long Beach: Curran Associates Inc,
2017: 6000-6010.
[15] ALMEIDA A, BRÁS S, OLIVEIRA I, et al. Vehicular
traffic flow prediction using deployed traffic counters in a
city[J]. Future Generation Computer Systems, 2022, 128:
429-442.
|