[1]MA Y, TANG K, CHEN S, et al. On-line aggressive
driving identification based on in-vehicle kinematic
parameters under naturalistic driving conditions[J].
Transportation Research Part C: Emerging Technologies,
2020, 114: 554-571.
[2]
程国柱,李天仪,汪国鹏.基于冰雪路面危险驾驶行为谱的行车风险识别方法[J].交通运输系统工程与信息, 2024, 24(4): 127-138. [CHENG G Z, LI T Y, WANG
G P, Driving risk identification method based on
dangerous driving behavior spectrum on ice and snow
pavement[J].
Journal
of
Transportation
Systems
Engineering and Information Technology, 2024, 24(4):
127-138.]
[3]
吴建清,张子毅,王钰博,等.考虑多模态数据的重载货车危险驾驶行为识别方法[J].交通运输系统工程与信息, 2024, 24(2): 63-75. [WU J Q, ZHANG Z Y,
WANG Y B, et al. Method for identifying dangerous
driving behaviors in heavy-duty trucks based on multi
modal data[J]. Journal of Transportation Systems
Engineering and Information Technology, 2024, 24(2):
63-75.]
[4]陆键,王可,蒋愚明.基于车辆行驶轨迹的道路不良驾驶行为实时辨识方法[J].交通运输工程学报,2020,20
(6): 227-235. [LU J, WANG K, JIANG Y M. Real-time
identification method of abnormal road driving behavior
based on vehicle driving trajectory[J]. Journal of Traffic
and Transportation Engineering, 2020, 20(6): 227-235.]
[5]王雪松,徐晓妍.基于自然驾驶数据的危险事件识别方法[J]. 同济大学学报(自然科学版),2020,48(1): 51
59. [WANG X S, XU X Y. Detection of safety-critical
events based on naturalistic driving data[J]. Journal of
Tongji University (Natural Science), 2020, 48(1): 51-59.]
[6] SHI X, WONG Y D, LI M Z F, et al. A feature learning
approach based on XGBoost for driving assessment and
risk prediction[J]. Accident Analysis & Prevention,
2019, 129: 170-179.
[7]单永航,张希,胡川,等.基于集成学习的交通事故严重程度预测研究与应用[J].计算机工程,2024,50(2):
33-42. [SHAN Y H, ZHANG X, HU C, et al. Traffic
accident severity prediction research and application
based on ensemble learning[J]. Computer Engineering,
2024, 50(2): 33-42.]
[8] DU X J, ZHAO W. Risky lane-changing behavior
recognition based on stacking ensemble learning on
snowy and icy surfaces[J]. Scientific Reports, 2024, 14
(1): 19257.
[9]
GUO M, ZHAO X, YAO Y, et al. A study of freeway
crash risk prediction and interpretation based on risky
driving behavior and traffic flow data[J]. Accident
Analysis & Prevention, 2021, 160: 106328.
[10] MA Y, ZHANG J, LU J, et al. Prediction and analysis of
likelihood of freeway crash occurrence considering risky
driving behavior[J]. Accident Analysis & Prevention.
2023, 192: 107244.
[11] 刘通, 付锐, 张士伟,等.车辆典型危险行驶状态识别与检测研究进展[J].中国安全科学学报,2017,27(10):
32-37. [LIU T, FU R, ZHANG S W, et al. Progress in
research on identification and detection of vehicle typical
hazardous driving states[J]. China Safety Science
Journal, 2017, 27(10): 32-37.]
[12] 王可, 陆键,蒋愚明.基于车辆行驶轨迹的道路不良驾驶行为谱构建与特征值计算方法[J].交通运输工程学报, 2020, 20(6): 236-249. [WANG K, LU J, JIANG Y M.
Abnormal road driving behavior spectrum establishment
and characteristic value calculation method based on
vehicle driving trajectory[J]. Journal of Traffic and
Transportation Engineering, 2020, 20(6): 236-249.]
[13] 薛清文,蒋愚明,陆键.基于轨迹数据的危险驾驶行为识别方法[J]. 中国公路学报,2020,33(6): 84-94. [XUE
Q W, JIANG Y M, LU J. Risky driving behavior
recognition based on trajectory data[J]. China Journal of
Highway and Transport, 2020, 33(6): 84-94.]
[14] 陈必俊.基于交通轨迹大数据的驾驶行为安全性评价方法[D]. 福州: 福建工程学院,2021. [CHENBJ.Safety
evaluation for driving behavior based on massive traffic
trajectory data[D]. Fuzhou: Fujian University of
Technology, 2021.]
[15] 交通运输部公路局.公路安全生命防护工程实施技术指南[M]. 北京: 人民交通出版社, 2015. [Highway
Administration Bureau of Ministry of Transport. Guide
for implementation of improve highway safety to cherish
the life project[M]. Beijing: China Communication Press,
2015.]
[16] DOUZAS G, BACAO F, LSAT F. Improving imbalanced
learning through a heuristic oversampling method based
on k-means and SMOTE[J]. Information Sciences, 2018,
465: 1-2
[17] 周星, 丁立新,万润泽,等.分类器集成算法研究[J].武汉大学学报(理学版),2015,61(6): 503-508. [ZHOU X,
DING L X, WAN R Z, et al. Research on classifier
ensemble algorithms[J]. Journal of Wuhan University
(Natural Science Edition), 2015, 61(6): 503-508.]
[18] LUNDBERG S M, LEE S I. A unified approach to
interpreting model predictions[J]. Arxiv Preprint Arxiv:
1705.07874, 2017.
[19] 张韡, 吴晓多,白骞,等.基于多项Logit模型的山区高速公路事故致因分析[J].科学技术与工程,2024,24
(5): 2111-2117. [ZHANG W, WU X D, BAI Q, et al.
Analysis of direct causes of highway accidents in
mountainous areas based on multinomial Logit model[J].
Science Technology and Engineering, 2024, 24(5): 2111
2117.]
[20] 李长城, 刘小明,荣建,等.不同能见度条件下高速公路车辆速度特性研究[J].交通运输系统工程与信息,
2014, 14(6): 213-218. [LI C C, LIU X M, RONG J, et al.
Characteristics of vehicle speed for expressway under
different visibility condition[J]. Journal of Transportation
Systems Engineering and Information Technology, 2014,
14(6): 213-218.]
[21] 南彦洲, 柯辉,朱才华,等.面向驾驶员心电数据的交叉口驾驶风险评估方法[J].中国安全科学学报,2023,
33(2): 185-193. [NAN Y Z, KE H, ZHU C H, et al.
A driving risk assessment method at intersection using
driver's ECG data[J]. China Safety Science Journal,
2023, 33(2): 185-193.]
|