[1] ZHAO CQ, WANGWS,LISP, et al. Influence of cut-in
maneuvers for an autonomous car on surrounding drivers:
Experiment and analysis[J]. IEEE Transactions on
Intelligent Transportation Systems, 2020, 21(6): 2266
76.
[2] REMMEN F, CARA I, DE GELDER E, et al. 2018 IEEE
International Conference on Vehicular Electronics and
Safety(ICVES), Cut-in scenario prediction for automated
vehicles [C]. Madrid: IEEE, 2018.
[3]TSAI W C, CHEN K C, LAI J S, et al. 2020 IEEE 63rd
International Midwest Symposium on Circuits and
Systems (MWSCAS), Front moving object behavior
prediction system exploiting deep learning technology for
ADAS applications[C]. Springfield: IEEE, 2020.
[4] YOON Y M, KIM C H, LEE J M, et al. Interaction-aware
probabilistic trajectory prediction of cut-in vehicles
using gaussian process for proactive control of
autonomous vehicles[J]. IEEE Access, 2021, 9: 63440
63455.
[5] XIE G T, QIN H M, HU M J, et al. Modeling
discretionary cut-in risks using naturalistic driving data
[J]. Transportation Research Part F: Traffic Psychology
and Behaviour, 2019, 65: 685-698.
[6] ZHOU W S, ZHU Y, ZHAO X M, et al. Cictp 2020:
Transportation evolution impacting future mobility, data
driven vehicle cut-in test cases generation for testing of
autonomous driving on highway[C]. Xi'an: American
Society of Civil Engineers, 2020.
[7] CHEN Y M, WANG J M. 2019 American Control
Conference (ACC), Trajectory tracking control for
autonomous vehicles in different cut-in scenarios[C].
Philadelphia: IEEE, 2019.
[8] HWANG S, LEE K, JEON H, et al. Autonomous vehicle
cut-in algorithm for lane-merging scenarios via policy
based reinforcement learning nested within finite-state
machine[J].
[9]
IEEE Transactions on Intelligent
Transportation Systems, 2022, 23(10): 17594-17606.
朱西产,张佳瑞,马志雄.安全切入场景下的驾驶人初始制动时刻分析[J].中国公路学报,2019,32(6):262
273, 318. [ZHU X C, ZHANG J R, MA Z X. Analysis of
driver initial brake time in safety cut-in scenario[J].
China Journal of Highway and Transport, 2019, 32(6):
262-273, 318.]
[10] 郭柏苍, 雒国凤,金立生,等.风险场景驱动的次任务驾驶行为对接管绩效的影响[J].同济大学学报(自然科学版), 2024, 52(6): 875-885. [GUO B C, LUO G F,
JIN L S, et al. Impact of risk scenario-driven secondary
task driving behavior on takeover performance[J]. Journal
of Tongji University (Natural Science), 2024, 52(6): 875
885.]
[11] 郑建明, 华一丁,张宇飞,等.考虑风险场景的驾驶员紧急制动模型研究[J]. 交通运输系统工程与信息,
2024, 24(6): 219-231, 253. [ZHENG J M, HUA Y D,
ZHANG Y F, et al. Driver emergency braking model
considering risk scenarios[J]. Journal of Transportation
Systems Engineering and Information Technology, 2024,
24(6): 219-231, 253.]
[12] 王菁, 董春娇,李鹏辉,等.考虑建成环境的电动自行车事故严重程度致因分析[J].交通运输系统工程与信息, 2024, 24(1): 179-187. [WANG J, DONG C J, LI P H,
et al. Causal analysis of e-bike traffic accident severity
considering
built
environment[J].
Journal
of
Transportation Systems Engineering and Information
Technology, 2024, 24(1): 179-187.]
[13] 谢世坤,杨轸,戢晓峰.货车移动遮断影响下的跟驰风险异质性建模[J].同济大学学报(自然科学版),
2022, 50(12): 1788-1797. [XIE S K, YANG Z, JI X F.
Modeling heterogeneity for car-following risk evaluation
under truck movement block[J]. Journal of Tongji
University (Natural Science), 2022, 50(12): 1788-1797.]
[14] FOUNTAS G, FONZONE A, OLOWOSEGUN A, et al.
Addressing unobserved heterogeneity in the analysis of
bicycle crash injuries in scotland: A correlated random
parameters ordered Probit approach with heterogeneity in
means[J]. Analytic Methods in Accident Research, 2021,
32: 1-20.
[15] OLOWOSEGUN A, BABAJIDE N, AKINTOLA A, et al.
Analysis of pedestrian accident injury-severities at road
junctions and crossings using an advanced random
parameter modelling framework: The case of scotland[J].
Accident Analysis and Prevention, 2022, 169: 106610.
|