交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (5): 83-90.DOI: 10.16097/j.cnki.1009-6744.2025.05.007

• 自动驾驶与智慧交通 • 上一篇    下一篇

车牌识别设备稀疏布局下的路段行程时间估计方法

王殿海1,王奕飞1,黄宇浪1,刘泳1,曾佳棋*1,2   

  1. 1. 浙江大学,建筑工程学院,智能交通研究所,杭州310058;2.浙江大学中原研究院,郑州450001
  • 收稿日期:2025-06-23 修回日期:2025-07-21 接受日期:2025-08-05 出版日期:2025-10-25 发布日期:2025-10-25
  • 作者简介:王殿海(1962—),男,吉林大安人,教授,博士。
  • 基金资助:
    国家自然科学基金(52402391, 52131202)。

Estimating Link Travel Time Under Sparse License Plate Recognition Device Coverage

WANG Dianhai1, WANG Yifei1, HUANG Yulang1, LIU Yong1, ZENG Jiaqi*1,2   

  1. 1. Institute of Intelligent Transportation System, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China; 2. Zhejiang University Zhongyuan Institute, Zhengzhou 450001, China
  • Received:2025-06-23 Revised:2025-07-21 Accepted:2025-08-05 Online:2025-10-25 Published:2025-10-25
  • Supported by:
    National Natural Science Foundation of China (52402391, 52131202)。

摘要: 车牌识别设备是城市路网中重要的交通状态检测器,但高昂的成本限制了其安装规模和密度。本文提出设备稀疏布局条件下的城市道路路段行程时间估计方法,考虑驻留轨迹的行程时间异常值干扰,将路段行程时间测量问题转化为混合整数优化模型,并设计基于不动点的交替求解方法。根据路段行程时间分布计算路径行程时间分布,识别异常行程时间;设计行程时间分配方法,将正常轨迹行程时间分配至各个路段;为确保计算稳定性,对高流量路段的行程时间分布参数进行贝叶斯更新,并将参数比例关系推广至流量不足的路段;通过迭代实现路段行程时间和异常轨迹的联合估计。杭州市真实车牌识别数据集的实验表明:70%设备覆盖率下,本文方法的平均百分比误差(MAPE)为13.29%;与梯度下降法相比,MAPE降低了7.69%,迭代次数减少了99.4%;针对车牌识别设备更加稀疏的城市场景,当设备覆盖率降至30%时,本文方法的MAPE仅为18.51%。

关键词: 智能交通, 交通状态, 组合优化, 路段行程时间, 车牌识别数据, 稀疏检测器

Abstract: License Plate Recognition (LPR) devices are crucial traffic state detectors in urban road networks, but the high cost limits their deployment scale and density. This paper proposes a method for urban road network link travel time estimation under sparse devices deployment. Considering the interference of dwell trajectory travel time outliers, this study develops a mixed-integer optimization model for the link travel time measurement, and proposes an alternating solution method based on fixed-point iteration. First, path travel time distributions are calculated based on link travel time distributions to identify abnormal travel times. A travel time assignment method is then designed to allocate normal trajectory travel times to individual links. To ensure computational stability, Bayesian updating is applied to the travel time distribution parameters of high-traffic links, and the parameter proportionality is extended to links with insufficient traffic flow. Link travel times and abnormal trajectories are jointly estimated through iteration procession. Experiments on a real LPR dataset from Hangzhou demonstrate that the proposed method achieves a mean percentage error (MAPE) of 13.29% under a 70% device penetration rate. Compared to the gradient descent method, the MAPE is reduced by 7.69%, and the number of iterations is reduced by 99.4%. Furthermore, for urban scenarios with even sparser LPR device coverage, when the device coverage rate drops to 30%, the proposed method results in the MAPE of 18.51%.

Key words: intelligent transportation, traffic state, combinatorial optimization, link travel time, license plate recognition data; sparse detectors

中图分类号: