交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (5): 169-178.DOI: 10.16097/j.cnki.1009-6744.2025.05.015

• 综合交通运输体系论坛 • 上一篇    下一篇

建成环境与主观感知对共享单车地铁换乘出行的非线性影响

尹超英1,周悦1,徐震宇1,邵春福2,王晓全*3,齐欣1   

  1. 1. 南京林业大学,汽车与交通工程学院,南京210037;2.新疆大学,新疆交通基础设施绿色建养与智慧交通管控重点实验室,乌鲁木齐830017;3.河海大学,土木与交通学院,南京210098
  • 收稿日期:2025-04-13 修回日期:2025-06-03 接受日期:2025-06-11 出版日期:2025-10-25 发布日期:2025-10-25
  • 作者简介:尹超英(1989—),女,山西五寨人,副教授,博士。
  • 基金资助:
    国家自然科学基金(52202388, 72204114)。

Nonlinear Effects of Built Environment and Subjective Perception on Bike-sharing and Metro Transfer Trips

YIN Chaoying1, ZHOU Yue1, XU Zhenyu1, SHAO Chunfu2, WANG Xiaoquan*3, QI Xin1   

  1. 1. College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing 210037, China; 2. Xinjiang Key Laboratory of Green Construction and Smart Traffic Control of Transportation Infrastructure, Xinjiang University, Urumqi 830017, China; 3. College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
  • Received:2025-04-13 Revised:2025-06-03 Accepted:2025-06-11 Online:2025-10-25 Published:2025-10-25
  • Supported by:
    National Natural Science Foundation of China (52202388, 72204114)。

摘要: 为探究建成环境因素对共享单车和地铁换乘出行的非线性影响,本文基于上海市共享单车数据,建立换乘识别缓冲区提取因变量,并从客观建成环境和主观感知两个方面提取自变量指标,构建XGBoost模型分析建成环境因素与换乘出行之间的非线性作用关系。研究结果表明:人口密度、到市中心的距离以及安全度对共享单车和地铁的换乘行为具有较为显著的影响,重要性占比分别为25.0%、13.4%和9.8%;此外,建成环境因素对共享单车和地铁换乘出行均呈现非线性影响和阈值效应,且不同变量的作用机制存在差异;人口密度和安全度对换乘出行的影响呈现正反馈特征,到市中心的距离对换乘出行的影响呈现负反馈特征。本文为优化城市交通规划和提升共享单车与地铁的协同服务提供科学参考。

关键词: 城市交通, 非线性影响, 机器学习, 换乘出行, 主观感知

Abstract: This study uses bike-sharing data from Shanghai to investigate the nonlinear effects of built environment factors on bike-sharing and metro transfer trips. The dependent variable was extracted by establishing transfer identification buffers, while independent variables were selected from both objective built environment and subjective perception. An XGBoost model was developed to investigate the nonlinear relationships between built environment factors and transfer trips. The results indicate that population density, distance to city center, and perceived safety significantly influence bike-sharing and metro transfer behavior, with relative importance scores of 25.0%、13.4%, and 9.8%. Moreover, built environment factors exhibit nonlinear effects and threshold effects on both bike-sharing and metro transfer trips, with varying operational mechanisms across different variables. Population density and perceived safety demonstrate positive effects on transfer trips, whereas distance to the city center shows a negative effect. This study provides reference for optimizing urban transportation planning and enhancing the coordinated service between bike-sharing and metro systems.

Key words: urban traffic, nonlinear effects, machine learning, transfer trips, subjective perception

中图分类号: