交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (5): 261-270.DOI: 10.16097/j.cnki.1009-6744.2025.05.023

• 系统工程理论与方法 • 上一篇    下一篇

城市轨道交通网络短时OD客流多任务协同预测

杨静*1,侯宇晴1,谢余晨1,杨安安2   

  1. 1. 北京建筑大学,土木与交通工程学院,北京100044;2.北京市智慧交通发展中心,北京101117
  • 收稿日期:2025-05-16 修回日期:2025-06-26 接受日期:2025-07-07 出版日期:2025-10-25 发布日期:2025-10-25
  • 作者简介:杨静(1980—),女,河北张家口人,副教授,博士。
  • 基金资助:
    国家自然科学基金(52402377);北京市自然科学基金(8252005)。

Multi-task Cooperative Prediction of Short-term Origin-Destination Flows in Urban Rail Transit Networks

YANG Jing*1, HOU Yuqing1, XIE Yuchen1, YANG Anan2   

  1. 1. School of Civil and Transportation Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; 2. Beijing Intelligent Transportation Development Center, Beijing 101117, China
  • Received:2025-05-16 Revised:2025-06-26 Accepted:2025-07-07 Online:2025-10-25 Published:2025-10-25
  • Supported by:
    National Natural Science Foundation of China (52402377); Natural Science Foundation of Beijing, China (8252005)。

摘要: 针对现有短时OD(Origin-Destination)预测方法中,OD客流与进出站客流关联性建模不足以及传统GNN(Graph Neural Network)表征能力受限的问题,本文提出一种融合多任务学习(Multi-task Learning, MTL)的时空图神经网络模型(MSTGN)。该模型将OD客流预测作为主任务,进出站流量作为辅助任务,借助消息传递图神经网络(MPNN)构建边-节点协同的时空传播模块,分别建模OD流(边特征)与站点客流(节点特征),实现对复杂时空耦合关系的高效刻画。同时,引入任务一致性约束与动态权重机制,优化多任务协同效果。在北京市和杭州市的地铁实证数据集上进行对比实验与消融分析,结果表明:MSTGN在平均绝对误差(MAE)、均方根误差(RMSE)、加权平均绝对百分比误差(WMAPE)这3项指标上分别较次优模型HIAM(Heterogeneous Information Aggregation Model)提升约5.5%~6.0%,验证了模型的跨城市泛化能力;其中,MPNN模块贡献最大,消融后性能下降达6.12%。研究结果表明,MSTGN在提升短时OD预测精度与系统适应性方面具备显著优势,为城市轨道交通的智能调度与资源优化提供了技术支撑。

关键词: 智能交通, 短时OD预测, 多任务学习, 城市轨道交通, 时空特征

Abstract: Aiming to address the insufficient modeling of the correlation between OD flows and station-level inbound and outbound flows, this paper proposes a spatio-temporal graph neural network model (MSTGN) incorporating multi-task learning (MTL) to overcome the limitation of representation capability while using the traditional GNNs in existing short-term OD prediction methods. MSTGN takes the prediction of OD flow as the main task and the prediction of station passenger flow as the auxiliary task, leveraging a message-passing graph neural network (MPNN) to build an edge-node collaborative spatio-temporal propagation module that models OD flows (edge features) and station flows (node features) separately, thus enabling efficient characterization of complex spatio-temporal coupling patterns. Moreover, a task consistency constraint and a dynamic weighting mechanism are introduced to enhance a multi-task collaboration. The comparative experiments and ablation studies conducted on empirical datasets from the subway systems in Beijing and Hangzhou demonstrate that MSTGN achieves an improvement of approximately 5.5%~6.0% in MAE, RMSE, and WMAPE compared with the suboptimal model HIAM, verifying the cross-city generalization ability of this model. The MPNN module shows the most significant contribution, with a performance degradation of 6.12% upon ablation. These results indicate that MSTGN offers notable advantages in improving the accuracy and system adaptability of short-term OD prediction, providing a strong technical support for intelligent scheduling and resource optimization in urban rail transit systems.

Key words: intelligent transportation, short-term OD prediction, multi-task learning, urban rail transit, spatio-temporal features

中图分类号: