|
[1] 张人杰,叶茂,金旭,等.基于时空特征的城市轨道交通短时OD估计方法[J].南京理工大学学报, 2024, 48(4): 512-519. [ZHANG R J, YE M, JIN X, et al. Short-term OD estimation for urban rail transit based on spatio-temporal characteristics[J]. Journal of Nanjing University of Science and Technology, 2024, 48(4): 512-519.]
[2] YAO X M, ZHAO P, YU D D. Real-time origin-destination matrices estimation for urban rail transit network based on structural state-space model[J]. Journal of Central South University, 2015, 22(11): 4498-4506.
[3] 周雨阳,李世堃,胡世龙,等.基于张量分解的城市轨道出行模式归因分析[J].铁路科学与工程学报, 2025, 22(5): 2000-2012. [ZHOU Y Y, LI S K, HU S L, et al. Attribution analysis on the travel mode of urban rail based on tensor decomposition[J]. Journal of Railway Science and Engineering, 2025, 22(5): 2000-2012.
[4] CHENG Z H, TRÉPANIER M, SUN L J. Real-time forecasting of metro origin-destination matrices with high-order weighted dynamic mode decomposition[J]. Transportation Science, 2022, 56(4): 904-918.
[5] WAND J, ZHANG Y, WEI Y, et al. Metro passenger flow prediction via dynamic hypergraph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(12): 7891-7903.
[6] LI Z, WANG X, CAI H, et al. Novel hybrid spatiotemporal convolution neural network model for short-term passenger flow prediction in a large-scale metro system[J]. Journal of Transportation Engineering, Part A: Systems, 2024, 150(5): 04024016.
[7] ZHAO L, et al. T-GCN: A temporal graph convolutional network for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858.
[8] 杨越迪,潘保霏,刘军,等.多分辨率多粒度时空特征提取的轨道交通短时OD客流预测方法[J]. 铁道学报, 2024, 46(11): 1-11. [YANG Y D, PAN B F, LIU J, et al. A short-term OD passenger flow prediction method for rail transit based on multi-resolution and multi-granularity spatio-temporal feature extraction[J]. Journal of the China Railway Society, 2024, 46(11): 1-11.]
[9] YU B, YIN H, ZHU Z. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[J]. arXiv Preprint arXiv: 1709.04875, 2017.
[10] GUO K, HU Y, QIAN Z, et al. Dynamic graph convolution network for traffic forecasting based on latent network of laplace matrix estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 23(2): 1009-1018.
[11] XU M, DAI W, LIU C, et al. Spatial-temporal transformer networks for traffic flow forecasting[J]. arXiv Preprint arXiv: 2001.02908, 2020.
[12] WANG, Y, YIN, H, CHEN, H, et al. Origin-destination matrix prediction via graph convolution: A new perspective of passenger demand modeling[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019: 1227-1235.
[13] SHI H, YAO Q, GUO Q, et al. Predicting origin-destination flow via multi-perspective graph convolutional network[C]//2020 IEEE 36th International Conference on Data Engineering, IEEE, 2020: 1818-1821.
[14] LIU L, ZHU Y, LI G, et al. Online metro origin-destination prediction via heterogeneous information aggregation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(3): 3574-3589.
|