[1] LIU A, PENTLAND A. Towards real-time recognition of
driver intentions[C]. Boston: IEEE Conference on
Intelligent Transportation System, Itsc. IEEE, 1997: 236-
241.
[2] 张宇惠, 张凤登. 基于HMM模型的驾驶员换道行为识别分析[J]. 电子科技, 2016, 29(6): 34-36. [ZHANG Y
H, ZHANG F D. Recognition and analysis of driver's
lane changing behavior based on HMM model[J].
Electronic Science and Technology, 2016, 29(6): 34-36.]
[3] 曲文奇. 交通车辆驾驶行为识别与轨迹预测方法研究
[D]. 吉 林: 吉林大学, 2021. [QU W Q. Research on
vehicle driving behavior recognition and trajectory
prediction method[D]. Jilin: Jilin University, 2021.]
[4] 宋晓琳, 郑亚奇, 曹昊天. 基于HMM-SVM的驾驶员换道意图辨识研究[J]. 电子测量与仪器学报, 2016, 30
(1): 58-65. [SONG X L, ZHENG Y Q, CAO H T.
Research on driver's lane change intention
recognition based on HMM-SVM[J]. Journal of Electronic
Measurement and Instrumentation, 2016, 30(1): 58-65.]
[5] 徐婷, 温常磊, 张香, 等. 基于GMM-CHMM的城市道路换道行为识别[J]. 交通运输系统工程与信息, 2020, 20
(1): 61- 67. [XU T, WEN C L, ZHANG X, et al. Lanechanging behavior recognition of urban roads based on
GMM-CHMM[J]. Transportation System Engineering and
Information, 2020, 20(1): 61-67.]
[6] DOGAN U, EDELBRUNNER J, IOSSIFIDIS I.
Autonomous driving: A comparison of machine learning
techniques by measns of the prediction of lane change
behavior[C]. Karon Beach: Proc. IEEE/RSJ International
Conference on Robotics and Biomimetics (RoBio2011),
IEEE, 2011.
[7] 陈亮, 冯延超, 李巧茹. 基于Multi-class SVM的车辆换道行为识别模型研究[J]. 安全与环境学报, 2020, 20
(1): 193-199. [CHEN L, FENG Y C, LI Q R. Research
on vehicle lane changing behavior recognition model
based on Multi-class SVM[J]. Journal of Safety and
Environment, 2020, 20(1): 193-199.]
[8] 黑凯先, 曲大义, 周警春, 等. 基于随机森林决策树的行驶车辆换道行为识别[J]. 青岛理工大学学报, 2020,
41(1): 115-120. [HEI K X, QU D Y, ZHOU J C, et al.
Lane-changing behavior recognition of driving vehicles
based on random forest decision tree[J]. Journal of
Qingdao University of Technology, 2020, 41(1): 115-
120.]
[9] 蒋司杨, 李朝, 雷毅, 等. 基于自然驾驶数据的驾驶人换道决策识别研究[J]. 汽车技术, 2022(1): 8. [JIANG S
Y, LI C, LEI Y, et al. Research on driver's lane change
decision recognition based on natural driving data[J].
Automotive Technology, 2022(1): 8.]
[10] 胡鑫. 基于函数分布特性的智能车辆换道行为识别
[J]. 智能计算机与应用, 2021, 11(7): 91-94, 101. [HU
X. Identification of intelligent vehicle lane changing
behavior based on function distribution characteristics
[J]. Intelligent Computer and Application, 2021, 11(7):91-94, 101.]
[11] 张海伦, 付锐. 面向前车的驾驶行为感知与意图识别算法研究[J]. 中国公路学报, 2022: 1-21. [ZHANG H
L, FU R. Research on driving behavior perception and
intent recognition algorithm facing the front car[J].
Journal of China Highway and Transportation, 2022: 1-
21.]
[12] ZYNER A, WORRALL S, WARD J, et al. Long short
term memory for driver intent prediction[C]. Los Angeles:
Intelligent Vehicles Symposium, IEEE, 2017.
[13] KHOSROSHAHI A, OHN-BAR E, TRIVEDI M M.
Surround vehicles trajectory analysis with recurrent
neural networks[C]. Rio de Janeiro: IEEE International
Conference on Intelligent Transportation Systems, IEEE,
2016.
[14] XIE D F, FANG Z Z, JIA B, et al. A data-driven lanechanging model based on deep learning[J].
Transportation Research Part C: Emerging Technologies,
2019, 106(2019): 41-60.
[15] 季学武, 费聪, 何祥坤, 等. 基于LSTM网络的驾驶意图识别及车辆轨迹预测[J]. 中国公路学报, 2019, 32(6):
34-42. [JI X W, FEI C, HE X K, et al. Driving intention
recognition and vehicle trajectory prediction based on
LSTM network[J]. Chinese Journal of Highways, 2019, 32
(6): 34-42.]
[16] 宋晓琳, 曾艳兵, 曹昊天, 等. 基于长短期记忆网络的换道意图识别方法[J]. 中国公路学报, 2021, 34(11):
236-245. [SONG X L, ZENG Y B, CAO H T, et al.
Lane change intention recognition method based on long
short-term memory network[J]. Journal of China
Highway, 2021, 34(11): 236-245.]
[17] 李晨. 基于组合神经网络的车辆驾驶行为预测[D]. 北 京: 北京交通大学, 2021. [LI C. Vehicle driving
behavior prediction based on combined neural network
[D]. Beijing: Beijing Jiaotong University, 2021.]
[18] THIEMANN C, TREIBER M, KESTING A. Estimating
acceleration and lane-changing dynamics based on
NGSIM trajectory data[J]. Transportation Research
Record Journal of the Transportation Research Board,
2008, 2088(2088): 90-101.
[19] BAHDANAU D, CHO K, BENGIO Y. Neural machine
translation by jointly learning to align and translate[J].
Computer Science, 2014: 1409.0473.
[20] XU K, BA J, KIROS R, et al. Show, attend and tell:
Neural image caption generation with visual attention[J].
Computer Science, 2015: 2048-2057.
|