[1] 冯焕焕, 邓建华, 葛婷. 引入驾驶风格的熵权法多属性换道决策模型[J]. 交通运输系统工程与信息, 2020, 20
(2): 139-144. [FENG H H, DENG J H, GE T. Multiattributes lane-changing decision model[J].
Transportation System Engineering and Information,
2020, 20(2): 139-144.]
[2] YU H, TSENG H E, LANGARI R. A human-like game
theory-based controller for automatic lane changing[J].
Transportation Research Part C: Emerging Technologies,
2018, 88: 140-158.
[3] 赵建东, 赵志敏, 屈云超, 等. 轨迹数据驱动的车辆换道意图识别研究[J]. 交通运输系统工程与信息, 2022,
22(4): 63-71. [ZHAO J D, ZHAO Z M, QU Y C, et al,
Vehicle lane change intention recognition driven by
trajectory data[J]. Transportation System Engineering and
Information, 2022, 22(4): 63-71.]
[4] 陈力, 殷时蓉, 罗天洪, 等. 基于BP神经网络的智能车辆换道决策模型研究[J]. 汽车工程学报, 2022, 12(1):
83-89. [CHEN L, YIN S R, LUO T H, et al. Research
on lane-changing decision model for intelligent vehicles
based on BP neural network[J]. Chinese Journal of
Automotive Engineering, 2022, 12(1): 83-89.]
[5] 裴晓飞, 莫烁杰, 陈祯福, 等. 基于 TD3 算法的人机混驾交通环境自动驾驶汽车换道研究[J]. 中国公路学
报, 2021, 34(11): 246-254. [PEI X F, MO S J, CHEN Z
F, et al. Lane changing of autonomous vehicle based on
TD3 algorithm in human-machine hybrid driving
environment[J]. China Journal of Highway and Transport,
2021, 34(11): 246-254.]
[6] HUEGLE M, KALWEIT G, MIRCHEVSKA B, et al.
Dynamic input for deep reinforcement learning in
autonomous driving[C]. 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
IEEE, 2019: 7566-7573.
[7] DONG J Q, CHEN S K, LI Y J, et al. Space-weighted
information fusion using deep reinforcement learning:
The context of tactical control of lane-changing
autonomous vehicles and connectivity range assessment
[J]. Transportation Research Part C: Emerging
Technologies, 2021, 128: 103192.
[8] 陈晨. 智能网联条件下高速公路事故路段车辆协同通行模型 [D]. 广 州: 华南理工大学, 2021. [CHEN C.
Cooperative traffic model of vehicles on highways
accident section under intelligent network connection[D].
Guangzhou: South China University of Technology, 2021.]
[9] 宗芳, 王猛, 贺正冰. 考虑多车影响的分子动力学智能网联跟驰模型[J]. 交通运输系统工程与信息, 2022, 22
(1): 37-48. [ZONG F, WANG M, HE Z B. A molecular
dynamics-based car-following model for connected
and automated vehicles considering impact of multiple
vehicles[J]. Transportation System Engineering and
Information, 2022, 22(1): 37-48.]
[10] VASWANI A, SHAZEER N, PARMAR N, et al.
Attention is all you need[J]. Advances in Neural
Information Processing Systems, 2017, 30(1): 5998-
6008.
[11] 王畅, 付锐, 张琼, 等. 换道预警系统中参数TTC 特性研究[J]. 中国公路学报, 2015, 28(8): 91-100, 108.
[WANG C, FU R, ZHANG Q, et al. Research on
parameter TTC characteristics of lane change warning
system[J]. China Journal of Highway and Transport,
2015, 28(8): 91-100, 108.]
[12] HASSELT H, GUEZ A, SILVER D. Deep reinforcement
learning with double Q-learning [C]. New York:Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, 2016.
[13] BAHDANAU D, CHO K, BENGIO Y. Neural machine
translation by jointly learning to align and translate[J].
Arxiv Preprint Arxiv: 1409.0473, 2014.
[14] 石蕊. 信号控制交叉口行车场建立及车辆通行行为优化[D]. 长春: 吉林大学, 2021. [SHI R. The construction
of risk field and optimization of driving behaviors for
signalized intersections[D]. Changchun: Jilin University,
2021.]
[15] KRAJZEWICZ D, ERDMANN J, BEHRISCH M, et al.
Recent development and applications of SUMOsimulation of urban mobility[J]. International Journal on
Advances in Systems and Measurements, 2012, 5(3/4):
128-138.
[16] TREIBER M, KESTING A. Traffic flow dynamics[J].
Traffic Flow Dynamics: Data, Models and Simulation,
Springer-Verlag Berlin Heidelberg, 2013: 983-1000.
[17] ERDMANN J. SUMO's lane-changing model[M]// Gereon
M, Modeling Mobility with Open Data. Berlin, Germany:
Springer, Cham, 2015: 105-123.
[18] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Humanlevel control through deep reinforcement learning[J].
Nature, 2015, 518(7540): 529-533.
|