[1] 蔡昌俊, 姚恩建, 王梅英, 等. 基于乘积ARIMA模型的城市轨道交通进出站客流量预测[J]. 北京交通大学学
报, 2014, 38 (2): 135-140. [CAI C J, YAO E J, WANG
M Y, et al. Prediction of urban railway station's entrance
and exit passenger flow based on multiply ARIMA model
[J]. Journal of Beijing Jiaotong University, 2014, 38(2):
135-140.]
[2] 白丽. 城市轨道交通常态与非常态短期客流预测方法研究[J]. 交通运输系统工程与信息, 2017, 17(1): 127-
135. [BAI L. Urban rail transit normal and abnormal
short-term passenger flow forecasting method[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2017, 17(1): 127-135.]
[3] 韩磊, 黄益绍. 基于改进极限学习机的公交站点短时客流预测方法[J]. 交通运输系统工程与信息,
2019, 19(4): 115-123. [HAN L, HUANG Y S. Shortterm passenger flow prediction method on bus stop based
on improved extreme learning machine[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2019, 19(4): 115-123.]
[4] 赵丽琴. 混合核支持向量机在地铁客流预测中的应用研究 [D]. 兰 州: 兰州交通大学, 2015. [ZHAO L Q.
Application and research on prediction of subway
passenger flow using mixed kernel support vector
machine[D]. Lanzhou: Lanzhou Jiaotong University,
2015.]
[5] ZHANG J, CHEN F, CUI Z, et al. Deep learning
architecture for ahort-term passenger flow forecasting in
urban rail transit[J]. IEEE Transactions on Intelligent
Transportation Systems, 2021, 22(11): 7004-7014.
[6] 赵建立, 石敬诗, 孙秋霞, 等. 基于混合深度学习的地铁站进出客流量短时预测[J]. 交通运输系统工程与信息, 2020, 20(5): 128-134. [ZHAO J L, SHI J S, SUN Q
X, et al. Short-time inflow and outflow prediction of
metro stations based on hybrid deep learning[J]. Journal
of Transportation Systems Engineering and Information
Technology, 2020, 20(5): 128-134.]
[7] VASWANI A, SHAZEER N, PARMAR N, et al.
Attention is all you need[C]. Proceedings of the 31st
International Conference on Neural Information
Processing Systems, 2017.
[8] GUO S, LIN Y, WAN H, et al. Learning dynamics and
heterogeneity of spatial-temporal graph data for traffic
forecasting[J]. IEEE Transactions on Knowledge and
Data Engineering, 2022, 34 (11): 5415-5428.
[9] LIU L, CHEN J, WU H, et al. Physical-virtual
collaboration modeling for intra-and inter-station metro
ridership prediction[J]. IEEE Transactions on Intelligent
Transportation Systems, 2022, 23 (4): 3377-3391.
[10] LI Y, YU R, SHAHABI C, et al. Diffusion convolutional
recurrent neural network: Data-driven traffic forecasting
[C]. International Conference on Learning
Representations, 2018.
|