交通运输系统工程与信息 ›› 2011, Vol. 11 ›› Issue (1): 114-120 .

• 系统工程理论与方法 • 上一篇    下一篇

高速公路事故多发点鉴别及诱发因素识别

孟祥海;李梅*;麦强;关志强   

  1. 哈尔滨工业大学 交通科学与工程学院, 哈尔滨 150090
  • 收稿日期:2009-09-14 修回日期:2010-08-28 出版日期:2011-02-25 发布日期:2012-12-20
  • 通讯作者: 李梅
  • 作者简介:孟祥海(1969-),男,黑龙江哈尔滨人,教授,博士.

Research on Identification of Black Spot and Accident Inducing Factor for Freeway

MENG Xiang-hai;LI Mei;MAI Qiang;GUAN Zhi-qiang   

  1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
  • Received:2009-09-14 Revised:2010-08-28 Online:2011-02-25 Published:2012-12-20
  • Contact: LI Mei

摘要: 为了提高事故多发点鉴别的客观公正性及自动化识别水平,提出了在公路沿线上划分初始评估地点的动态聚类算法,建立了鉴别事故多发点的自组织神经网络模型,给出了基于离散多变量算法与概率分布相结合的事故多发点突出事故诱发因素识别过程. 方法应用结果表明,基于动态聚类的初始评估点划分方法能够客观地描述出事故点在公路沿线上的集中与分散状况,而神经网络鉴别模型能够对初始评估地点的安全状况进行自动分类且结果较合理. 在掌握了能够满足统计分析要求的事故样本点数量的基础上,能够应用突出事故诱发因素识别方法建立一套评估标准,并用来识别事故多发点的突出事故诱发因素.

关键词: 公路运输, 高速公路, 路段划分, 事故多发点鉴别, 诱发因素识别, 动态聚类, 自组织神经网络

Abstract: In order to improve the objectivity, fairness and automated identification level of black spot identification, dynamic clustering algorithm, which is used to divide initial assessment of sites along the road, is proposed firstly. Then, the self-organizing neural network model is established to identify black spot. Thirdly, black spot prominent accidents induced factors’ identification process based on discrete multi-variable algorithm combined with probability distribution is presented. The results show that the initial assessment based on dynamic clustering method can describe the accidents’ concentration and dispersion objectivity, while the neural network model can give an automatic classification to the initial assessment of the security situation and the results are more reasonable. In the master can meet the requirements of statistical analysis of accidents on the basis of the number of sample points, black spot prominent accidents inducing factor identification methods, which can be used to establish a set of evaluation criteria and identify prominent accidents inducing factor.

Key words: highway transportation, freeway, segment division, black spot identification, accident inducing factor identification, dynamic cluster analysis, self-organizing neural network

中图分类号: