交通运输系统工程与信息 ›› 2014, Vol. 14 ›› Issue (3): 207-213.

• 案例分析 • 上一篇    下一篇

基于 K-means 的北京地铁路网重要度聚类分析

高 勃*a,b,秦 勇 b, 肖雪梅 b,祝凌曦 b   

  1. 北京交通大学 a. 信息中心;b. 交通运输学院,北京 100044
  • 收稿日期:2013-11-05 修回日期:2014-05-02 出版日期:2014-06-25 发布日期:2014-07-10
  • 作者简介:高勃(1980-),男,山东泰安人,工程师,博士生.

K-means Clustering Analysis of Key Nodes and Edges in Beijing Subway Network

GAO Boa,b, QIN Yongb, XIAO Xue-meib, ZHU Ling-xib   

  1. a. Information Center;b. School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
  • Received:2013-11-05 Revised:2014-05-02 Online:2014-06-25 Published:2014-07-10

摘要:

以图论为基础,以北京地铁为研究对象,结合地铁运营客流时空分布的特点, 构建北京地铁有向加权路网模型;采用 K-means 聚类分析方法,根据地铁路网中车站和区 间的两个基本的物理拓扑属性(度、介数),以及客运量对其进行分类,确定关键车站和区 间.其中,度反映的是节点的局部聚集能力,介数反映的是节点和边对全局的影响能力,而 客运量则反映了不同时间段节点和边在运输中的重要性.实证分析表明,该方法可以从系 统网络的角度动态辨识系统中的关键车站和区间.

关键词: 城市交通, 重要度, K-means, 地铁路网, 异质性

Abstract:

This paper modeled a subway system as a directed and weighted network with consideration of the temporal and spatial distribution of passengers in the subway system. Based on the K-means clustering, stations (nodes) and intervals (edges) in a subway network were grouped by three metrics: two basic topologi- cal properties (degree and betweenness), and their roles in transporting people (passenger volume). Degree re- flects the nodes’local accumulation ability; betweenness reflects a node or edge’s the impact on the global network topology, and passenger volume reflects a node or edge’s importance in transport people at different times. Taking the Beijing Subway network as a case study, the paper tested the effectiveness of the proposed approach. The results suggested that the method could identify key nodes and edges and provide dynamic de- cision support for subway network operators.

Key words: urban traffic , key edges and nodes, K-means, subway network, heterogeneity

中图分类号: