交通运输系统工程与信息 ›› 2015, Vol. 15 ›› Issue (6): 39-45.

• 智能交通系统与信息技术 • 上一篇    下一篇

一种路网交通流参数的融合预测方法

聂佩林1,龚峻峰*2   

  1. 1. 佛山科学技术学院环境与土木建筑学院,广东佛山528000;2. 华南理工大学土木与交通学院,广州510640
  • 收稿日期:2015-07-01 修回日期:2015-09-29 出版日期:2015-12-25 发布日期:2015-12-25
  • 作者简介:聂佩林(1980-),男,广东惠州人,讲师,博士.
  • 基金资助:

    广东省自然科学基金(2014A030313617)

A Combined Traffic Network Flow Prediction Method

NIE Pei-lin1, GONG Jun-feng2   

  1. 1. Environment and Construction College, Foshan University, Foshan 528000, Guangdong, China; 2. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
  • Received:2015-07-01 Revised:2015-09-29 Online:2015-12-25 Published:2015-12-25

摘要:

提出了数据驱动与中观交通仿真融合的交通流预测框架.该框架将数据驱动 方法在路网局部断面和路段的高精度预测能力与中观交通仿真的路网范围预测能力结 合起来,通过可信度高的路网局部断面和路段预测值,在线修正中观交通仿真模型的参 数,使得中观交通仿真模型能够逼近、反映交通流运动趋势,提高路网范围交通状态预测 精度.通过结合路段旅行时间预测与中观交通仿真的实例分析证明,断面和路段预测和中 观交通仿真结合发挥了两者各自的优势,预测结果优于单一的中观交通仿真方法.

关键词: 智能交通, 路网交通状态预测, 中观交通仿真, 数据驱动

Abstract:

A framework that combines data-driven predictors and mesoscopic traffic simulators is proposed for traffic network state prediction. In the framework, the mesoscopic simulation model with network prediction ability is calibrated on-line by the highly reliable road segment traffic flow prediction results from the data- driven predictors. Therefore, the calibrated mesoscopic simulation system is able to capture the evolution of traffic flow and improve the network traffic prediction accuracy. A case study, which combines the road segment travel time predictor and the mesoscopic traffic simulator, is conducted to verify the effectiveness of the framework. The empirical results show that the framework fully utilizes the advantages of the two prediction approaches and achieves better traffic network state prediction performances than the method that applies the mesoscopic traffic simulation only.

Key words: intelligent transportation, traffic network state prediction, mesoscopic traffic simulation, datadriven

中图分类号: