交通运输系统工程与信息 ›› 2016, Vol. 16 ›› Issue (2): 183-190.

• 系统工程理论与方法 • 上一篇    下一篇

考虑公平与效率目标的城乡配送中心排队选址模型

曾倩1,张锦*1,2,陈义友1   

  1. 1. 西南交通大学交通运输与物流学院,成都610031;2. 综合交通运输智能化国家地方联合工程实验室,成都610031
  • 收稿日期:2015-10-26 修回日期:2015-12-26 出版日期:2016-04-25 发布日期:2016-04-25
  • 作者简介:曾倩(1991-),女,四川德阳人,博士生.
  • 基金资助:

    国家自然基金/ National Natural Science Foundation of China (41501123);江苏高校哲学社会科学研究项目/ Social Science Research in Colleges and Universities in Jiangsu Province (2015SJB833).

The Queuing Location Models of Urban-rural Distribution Centers Considering Equity and Efficiency

ZENG Qian1, ZHANG Jin1,2, CHEN Yi-you1   

  1. 1.School of Transportation and Logisitcs, Southwest Jiaotong Universtiy, Chengdu 610031, China; 2. National United Engineering Laboratory of Integrated and Intelligent Transportation, Chengdu 610031, China
  • Received:2015-10-26 Revised:2015-12-26 Online:2016-04-25 Published:2016-04-25

摘要:

为解决随机需求下的城乡配送中心选址问题,实现物流服务的效率与公平,结合排队论构建了需求转移规则下的排队选址模型.为体现城乡客户需求特征差异,构建时 间满意度函数作为服务水平的衡量指标.将客户与配送中心看作M/M/p 排队系统,采用需求可转移的排队规则,运用超立方模型计算配送中心的可用概率.目标函数包括嫉妒最小、基尼系数最小及字典序最大等3 类公平目标,以及覆盖需求量最大、满意度最大两类 效率目标.设计禁忌搜索算法求解,通过算例对模型和算法进行验证.结果表明,P 中位模 型下效率最优,最小嫉妒目标下公平最优,而最大字典序目标可以兼顾公平与效率.

关键词: 物流工程, 公平, 超立方模型, 排队选址问题, 城乡配送

Abstract:

To solve the location problem of urban- rural distribution centers under the random demand condition, queuing location models are built combined with queuing theory under a demand transfer rule. And the models focus on both equity goals and efficiency goals. The time satisfaction functions as the measure of service level reflects the differences between urban and rural demands. The system of customers and distribution centers is considered to be an M/M/p queuing system. The queuing discipline allows demands transfer when the distribution center is busy. The hypercube model is provided to calculate the probability of centers being available. The objective functions include equity objectives such as minimizing envy, minimizing Gini coefficient and maximizing lexicographical order, and efficiency objectives such as maximizing demands covered and satisfaction. The models are solved by a tabu search algorithm and tested on a real world data set from the distribution system. It is proved that the P- median model is efficiency optimization; the minimize envy model is equity optimization; the maximize lexicographical order model can achieve the equity-efficiency tradeoff.

Key words: logistics engineering, equality, hypercube model, queuing location problem, urban- rural distribution

中图分类号: