交通运输系统工程与信息 ›› 2016, Vol. 16 ›› Issue (2): 176-182.

• 系统工程理论与方法 • 上一篇    下一篇

求解带硬时间窗车辆路径问题的改进UMDA 算法

柴获a,b,何瑞春*b,马昌喜b ,代存杰a,b   

  1. 兰州交通大学a. 机电技术研究所;b. 交通运输学院,兰州730070
  • 收稿日期:2015-09-29 修回日期:2015-11-22 出版日期:2016-04-25 发布日期:2016-04-25
  • 作者简介:柴获(1982-), 男, 甘肃静宁人, 讲师, 博士生.
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China(61364026,51408288);兰州交通大学校青年基金/ Youth Foundation of Lanzhou Jiaotong University(2015026);兰州市科技计划项目/Science and Technology Planing Project of Lanzhou(2014-1-172).

A Univariate Marginal Distribution Algorithm Hybridized with Insertion Heuristics for the Vehicle Routing Problem with Hard Time Windows

CHAI Huoa,b,HE Rui-chunb,MAChang-xib,DAI Cun-jiea,b   

  1. a. Mechatronics Technology and Research Institute; b. School of Traffic and Transportation,Lanzhou Jiaotong University, Lanzhou 730070,China
  • Received:2015-09-29 Revised:2015-11-22 Online:2016-04-25 Published:2016-04-25

摘要:

针对带硬时间窗的车辆路径问题(VRPHTW)求解,提出了一种混合单变量边 缘分布算法(hybrid UDMA,hUDMA),改进了基本UMDA的概率模型.统计节点按路径分 布的概率,使其能够在解空间上找到节点—路径的分布关系,提高了UMDA的全局搜索 能力.采用两阶段插入法进行最佳节点搜索和路径分配完成UMDA采样操作,通过种群 进化来获取最优解.计算Solomon 100 客户的6 类问题56 个算例的实验结果表明:在最优 解的取得方面,C类算例能够全部取得最优解,R、RC类算例能以50%左右概率取得最优 解;在平均误差方面,C类算例计算结果与已知最优解一致,R、RC类算例计算误差率与 已知最优解比较接近,平均误差率为1.03%.

关键词: 交通工程, 分布估计算法, 单变量边缘分布算法, 带时间窗车辆路径问题, 概率模型, 插入法

Abstract:

This paper presents a univariate marginal distribution algorithm hybridized with insertion heuristics for the vehicle routing problem with hard time windows (VRPHTW). In the VRPHTW,a fleet of vehicles must deliver goods to a set of customers,time window constraints of the customers must be respected and the fact that the travel time between two points depends on the time of departure has to be taken into account. The latter assumption is particularly important in an urban context where the traffic plays a significant role. A shortcoming of univariate marginal distribution algorithm for vehicle routing problems is that,customers are not independent events in probabilistic model. Hence,we propose a novel probabilistic model that probability of the distribution of customers delivered by the same vehicle. Moreover,the new population is generated by two phase insertion heuristics method. Computational results with 56 Solomon benchmark problems confirm the benefits of other algorithms,the resulting algorithm turns out to be competitive,matching or improving the best known results.

Key words: traffic engineering, estimation of distribution algorithms, univariate marginal distribution algorithm, vehicle routing problem with time windows, probabilistic model, insertion heuristics

中图分类号: