交通运输系统工程与信息 ›› 2020, Vol. 20 ›› Issue (1): 104-110.

• 系统工程理论与方法 • 上一篇    下一篇

基于Q-learning 的定制公交跨区域路径规划研究

彭理群*,罗明波,卢赫,柏跃龙   

  1. 华东交通大学交通运输与物流学院,南昌 330013
  • 收稿日期:2019-09-16 修回日期:2019-11-01 出版日期:2020-02-25 发布日期:2020-03-02
  • 作者简介:彭理群(1984-),男,湖北武汉人,副教授,博士.
  • 基金资助:

    国家自然科学基金/National Natural Science Foundation of China(61703160,51605350).

Cross-regional Customized Bus Path Planning Based on Q-learning

PENG Li-qun, LUO Ming-bo, LU He, BAI Yue-long   

  1. School of Transportation and Logistics, East China Jiaotong University, Nanchang 330013, China
  • Received:2019-09-16 Revised:2019-11-01 Online:2020-02-25 Published:2020-03-02

摘要:

考虑城市大客流通勤者跨区域出行需求,结合城市公交线网中乘客出行密集、客流走向规律等特点,提出一种跨区域定制公交的搭乘方案. 通过改进的Q-learning 模型对公交线路进行优化,为城市通勤者提供更加便捷和高效的出行服务. 通过综合路段拥堵状态、乘客需求及居民小区位置,设定了Q-learning 强化学习的奖惩函数,提升定制公交区域路径的直线系数、满载率、通行时间. 结果表明,所提出的改进方法能够降低通勤者跨区域通行的旅行时间,有效提高髙峰时段定制公交线网的通行效率.

关键词: 城市交通, 公交线路规划, 强化学习, 定制公交, 跨区域通行

Abstract:

This paper investigates a customized transit scheduling strategy for urban residents commuting across multiple regions with comprehensively considering the demand of massive urban commuters, as well as the characteristics of transit passenger density and flow in urban network. The Q- learning reinforcement learning improved method is applied to optimize the bus route. Through the integrated road congestion status, passenger demand and residential area location, the reward and punishment function of Q-learning reinforcement learning is set, and the linear coefficient, full load rate and transit time of the customized bus area path are improved. The results show that the proposed improved method can reduce the travel time of commuters across regions, and effectively improve the efficiency of customized bus lines during peak hours.

Key words: traffic engineering, bus route planning, reinforcement learning, custom bus, cross-regional travel

中图分类号: