交通运输系统工程与信息 ›› 2021, Vol. 21 ›› Issue (5): 148-159.
田钧方,朱陈强,贾宁*,马寿峰
收稿日期:
2021-06-03
修回日期:
2021-07-26
接受日期:
2021-08-04
出版日期:
2021-10-25
发布日期:
2021-10-21
作者简介:
田钧方(1986- ),男,湖北黄冈人,副教授。
基金资助:
TIAN Jun-fang, ZHU Chen-qiang, JIA Ning* , MA Shou-feng
Received:
2021-06-03
Revised:
2021-07-26
Accepted:
2021-08-04
Online:
2021-10-25
Published:
2021-10-21
Supported by:
摘要: 随着轨迹收集技术与数据分析技术的迅速发展,越来越多的车辆行驶轨迹被采集并用于 交通流研究。车辆轨迹数据主要包括车辆运行的位置与时间等信息,利用这些信息可以推算出 车辆的速度、加速度及其与前车之间的空间和时间距离等驾驶行为参量。通过研究轨迹数据可 以揭示车辆自身的运行规律,车辆之间的相互作用规律,道路环境对车辆的作用规律,以及由此 产生的宏观、微观交通流现象,因此,轨迹数据研究受到日益重视。本文简要回顾了与轨迹数据 收集相关的历史,介绍了自然场景下采集的Next Generation SIMulation(NGSIM)数据及实验场景 下采集的车队轨迹数据,并梳理了近几年基于车辆跟驰轨迹的理论研究。首先,分析以交通振 荡、交通回滞为代表的交通流关键实测现象研究工作;整理跟驰行为分析方面的研究成果,包括 不对称跟驰行为、稳定跟驰行为的存在性、跟驰行为的记忆效应、任务难度、随机性、异质性。之 后,介绍基于跟驰行为分析成果而构建的仿真模型。最后,从3个方面评述现有基于轨迹数据的 研究,并提出未来展望:交通流关键实测现象方面,应收集更多不同条件下的数据,并尝试构建更 加普适性的理论或模型解释交通流现象;跟驰行为分析方面,可结合数据挖掘技术或生理、心理 理论,量化驾驶员跟驰特性与生理、心理特征,并将两者结合深入分析跟驰行为的机理;仿真建模 方面,可更多考虑驾驶员生理和心理变量,使模型更具人性化特征,并关注模型的评价方法,注重 模型对实际交通流的解释能力。
中图分类号:
田钧方, 朱陈强, 贾宁, 马寿峰. 基于轨迹数据的车辆跟驰行为分析与建模综述[J]. 交通运输系统工程与信息, 2021, 21(5): 148-159.
TIAN Jun-fang, ZHU Chen-qiang, JIA Ning , MA Shou-feng. Review of Car-following Behavior Analysis and Modeling Based on Trajectory Data[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 148-159.
[1] 李力, 姜锐, 贾斌, 等. 现代交通流理论与应用(卷Ⅰ): 高速公路交通流[M]. 北京: 清华大学出版社, 2011. [LI L, JIANG R, JIA B, et al. Modern traffic flow theory and application (Volume I), highway traffic flow[M]. Beijing: Tsinghua University Press, 2011.] [2] 张生瑞. 交通流理论[M]. 北京: 人民交通出版社, 2015. [ZHANG S R. Traffic flow theory[M]. Beijing: China Communications Press, 2015.] [3] 邵春福, 魏丽英, 贾斌. 交通流理论[M]. 北京: 电子工业 出版社, 2012. [SHAO C F, WEI L Y, JIA B. Traffic flow theory[M]. Beijing: Publishing House of Electronics Industry, 2012.] [4] GREENSHIELDS B, BIBBINS J, CHANNING W, et al. A study of traffic capacity[C]. Washington: Highway Research Board Proceedings,1935. [5] TRANSPORTATION RESEARCH BOARD. 75 years of the fundamental diagram for traffic flow theory: Greenshields symposium[C]. Washington: Transportation Research E-Circular, 2011. [6] 刘浩, 张可, 王笑京, 等. 交通动态数据获取与分析应 用新技术[M]. 北京: 人民交通出版社, 2012. [LIU H, ZHANG K, WANG X J, et al. New technologies for dynamic traffic data collection and analysis[M]. Beijing: China Communications Press, 2012.] [7] BUCH N, VELASTIN S A, ORWELL J. A review of computer vision techniques for the analysis of urban traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(3): 920-939. [8] MAURIN B, MASOUD O, PAPANIKOLOPOULOS N P. Tracking all traffic: Computer vision algorithms for monitoring vehicles, individuals, and crowds[J]. IEEE Robotics & Automation Magazine, 2005, 12 (1): 29-36. [9] ZHANG W, JORDAN G, LIVSHITS V. Generating a vehicle trajectory database from time-lapse aerial photography[J]. Transportation Research Record, 2016, 2594(1): 148-158. [10] KRAJEWSKI R, BOCK J, KLOEKER L, et al. The high dataset: A drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems[C]. HAWAII: 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018. [11] OSSEN S. Longitudinal driving behavior: Theory and empirics[D]. Delft: Delft University of Technology, 2008. [12] NGSIM. Next generation simulation[DB/OL]. USA: FHWA, 2006. https: //ops. fhwa. dot. gov/ trafficanalysistools/ngsim.htm. [13] BARMPOUNAKIS E, GEROLIMINIS N. On the new era of urban traffic monitoring with massive drone data: The pNEUMA large-scale field experiment[J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 50- 71. [14] KE R, LI Z, TANG J, et al. Real-time traffic flow parameter estimation from UAV video based on ensemble classifier and optical flow[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 54-64. [15] KAUFMANN S, KERNER B S, REHBORN H, et al. Aerial observations of moving synchronized flow patterns in over-saturated city traffic[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 393-406. [16] FHWA. NGSIM US- 101 Data Analysis[R]. California, America: Cambridge Systematic, 2005. [17] PUNZO V, ZHENG Z, MONTANINO M. About calibration of car-following dynamics of automated and human-driven vehicles: Methodology, guidelines and codes[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103165. [18] XU T, LAVAL J. Statistical inference for two-regime stochastic car-following models[J]. Transportation Research Part B: Methodological, 2020, 134: 210-228. [19] TREIBER M, KESTING A. The intelligent driver model with stochasticity-new insights into traffic flow oscillations[J]. Transportation Research Procedia, 2017, 23: 174-187. [20] TREIBER M, KESTING A. The intelligent driver model with stochasticity: New insights into traffic flow oscillations[J]. Transportation Research Part B: Methodological, 2018, 117: 613-623. [21] TIAN J, ZHU C, CHEN D, et al. Car following behavioral stochasticity analysis and modeling: Perspective from wave travel time[J]. Transportation Research Part B: Methodological, 2021, 143: 160-176. [22] TIAN J, ZHANG H M, TREIBER M, et al. On the role of speed adaptation and spacing indifference in traffic instability: Evidence from car-following experiments and its stochastic model[J]. Transportation Research Part B: Methodological, 2019, 129: 334-350. [23] TIAN J, JIANG R, JIA B, et al. Empirical analysis and simulation of the concave growth pattern of traffic oscillations[J]. Transportation Research Part B: Methodological, 2016, 93 (A): 338-354. [24] TIAN J, LI G, TREIBER M, et al. Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow[J]. Transportation Research Part B: Methodological, 2016, 93: 560-575. [25] JIANG R, HU M B, ZHANG H M, et al. Traffic experiment reveals the nature of car-following[J]. Plos One, 2014, 9 (4): e94351. [26] JIANG R, HU M B, ZHANG H M, et al. On some experimental features of car-following behavior and how to model them[J]. Transportation Research Part B: Methodological, 2015, 80: 338-354. [27] 关伟, 杨柳, 江世雄, 等. 脑电在交通驾驶行为中的应 用研究综述[J]. 交通运输系统工程与信息, 2016, 16 (3): 35- 44. [GUAN W, YANG L, JIANG S X, et al. Review on the application of EEG in traffic driving behavior study[J]. Journal of Transportation Systems Engineering and Information Technology, 2016, 16(3): 35-44.] [28] ZHAO P, LEE C. Assessing rear-end collision risk of cars and heavy vehicles on freeways using a surrogate safety measure[J]. Accident Analysis & Prevention, 2018, 113: 149-158. [29] XIE K, YANG D, OZBAY K, et al. Use of real- world connected vehicle data in identifying high-risk locations based on a new surrogate safety measure[J]. Accid Anal Prev, 2019, 125: 311-319. [30] WANG C, XU C, DAI Y. A crash prediction method based on bivariate extreme value theory and video-based vehicle trajectory data[J]. Accid Anal Prev, 2019, 123: 365-373. [31] SUN Z, HAO P, BAN X, et al. Trajectory-based vehicle energy/emissions estimation for signalized arterials using mobile sensing data[J]. Transportation Research Part D: Transport and Environment, 2015, 34: 27-40. [32] VIEIRA D R T, CAN A, PARZANI C, et al. Are vehicle trajectories simulated by dynamic traffic models relevant for estimating fuel consumption?[J]. Transportation Research Part D: Transport and Environment, 2013, 24: 17-26. [33] VIEIRA D R T, LECLERCQ L, MONTANINO M, et al. Does traffic-related calibration of car-following models provide accurate estimations of vehicle emissions?[J]. Transportation Research Part D: Transport and Environment, 2015, 34: 267-280. [34] ZHANG K, BATTERMAN S, DION F. Vehicle emissions in congestion: Comparison of work zone, rush hour and free-flow conditions[J]. Atmospheric Environment, 2011, 45(11): 1929-1939. [35] LI L, JIANG R, HE Z, et al. Trajectory data-based traffic flow studies: A revisit[J]. Transportation Research Part C: Emerging Technologies, 2020, 114: 225-240. [36] 杨龙海, 张春, 仇晓赟, 等. 车辆跟驰模型研究进展[J]. 交通运输工程学报, 2019, 19(5): 125-138. [YANG L H, ZHANG C, QIU X Y, et al. Research progress on carfollowing model[J]. Journal of Traffic and Transportation Engineering, 2019, 19 (5): 125-138.] [37] SAIFUZZAMAN M, ZHENG Z. Incorporating humanfactors in car-following models: A review of recent developments and research needs[J]. Transportation Research Part C: Emerging Technologies, 2014, 48: 379- 403. [38] LI L, CHEN X. Vehicle headway modeling and its inferences in macroscopic/microscopic traffic flow theory: A survey[J]. Transportation Research Part C: Emerging Technologies, 2017, 76: 170-188. [39] AHN S. Formation and spatial evolution of traffic oscillations[D]. Berkeley: University of California, Berkeley, 2005. [40] ZHENG Z, AHN S, CHEN D, et al. Freeway traffic oscillations: Microscopic analysis of formations and propagations using Wavelet Transform[J]. Transportation Research Part B, 2011, 45 (9): 1378-1388. [41] LAVAL J A, LECLERCQ L. A mechanism to describe the formation and propagation of stop-and-go waves in congested freeway traffic[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 368(1928): 4519-4541. [42] CHEN D, LAVAL J, ZHENG Z, et al. A behavioral carfollowing model that captures traffic oscillations[J]. Transportation Research Part B: Methodological, 2012, 46 (6): 744-761. [43] 贾斌, 高自友, 李克平, 等. 基于元胞自动机的交通系统建模与模拟[M]. 北京: 科学出版社, 2007. [JIA B, GAO Z Y, LI K P, et al. Models and simulations of traffic system based on the theory of cellular automaton[M]. Beijing: Science Press, 2007.] [44] LAVAL J A. Hysteresis in traffic flow revisited: An improved measurement method[J]. Transportation Research Part B: Methodological, 2011, 45(2): 385-391. [45] CHEN D, LAVAL J A, AHN S, et al. Microscopic traffic hysteresis in traffic oscillations: A behavioral perspective [J]. Transportation Research Part B: Methodological, 2012, 46(10): 1440-1453. [46] HALL F L, ALLEN B L, GUNTER M A. Empirical analysis of freeway flow-density relationships[J]. Transportation Research Part A: General, 1986, 20(3): 197-210. [47] LEUTZBACH D. Introduction to the theory of traffic flow [M]. Berlin: Springer, 1988. [48] YEO H. Asymmetric microscopic driving behavior theory [D]. Berkeley: University of California, Berkeley, 2008. [49] YEO H, SKABARDONIS A. Understanding stop- and- go traffic in view of asymmetric traffic theory[C]// LAM W H K, WONG S C, LO H K. Transportation and Traffic Theory 2009: Golden Jubilee: Papers selected for presentation at ISTTT18. Boston, MA: Springer US, 2009: 99-115. [50] TORDEUX A, LASSARRE S, ROUSSIGNOL M. An adaptive time gap car-following model[J]. Transportation Research Part B: Methodological, 2010, 44 (8/9): 1115- 1131. [51] WEI D, LIU H. Analysis of asymmetric driving behavior using a self-learning approach[J]. Transportation Research Part B: Methodological, 2013, 47: 1-14. [52] LI X, LUO X, HE M, et al. An improved car-following model considering the influence of space gap to the response[J]. Physica A: Statistical Mechanics and its Applications, 2018, 509: 536-545. [53] KERNER B S. The physics of traffic: empirical freeway pattern features, engineering applications, and theory[M]. Berlin: Springer Science & Business Media, 2004. [54] KERNER B S. Introduction to modern traffic flow theory and control: The long road to three- phase traffic theory [M]. Berlin: Springer Science & Business Media, 2009. [55] TIAN J, TREIBER M, MA S, et al. Microscopic driving theory with oscillatory congested states: Model and empirical verification[J]. Transportation Research Part B, 2015, 71: 138-157. [56] TREIBER M, HELBING D. Memory effects in microscopic traffic models and wide scattering in flowdensity data[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2003, 68(4): 046119. [57] SUN Y, GE H, CHENG R. An extended car-following model considering driver's memory and average speed ofpreceding vehicles with control strategy[J]. Physica A: Statistical Mechanics and its Applications, 2019, 521: 752-761. [58] WANG X, JIANG R, LI L, et al. Capturing car-following behaviors by deep learning[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(3): 910- 920. [59] WANG X, JIANG R, LI L, et al. Long memory is important: A test study on deep-learning based carfollowing model[J]. Physica A: Statistical Mechanics and its Applications, 2019, 514: 786-795. [60] FULLER R. Towards a general theory of driver behaviour [J]. Accident Analysis & Prevention, 2005, 37(3): 461- 472. [61] FULLER R. The task- capability interface model of the driving process[J]. Recherche-Transports-Sécurité, 2000, 66: 47-57. [62] SAIFUZZAMAN M, ZHENG Z, HAQUE M M, et al. Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level[J]. Transportation Research Part B: Methodological, 2017, 105: 523-538. [63] OSSEN S, HOOGENDOORN S P. Heterogeneity in carfollowing behavior: Theory and empirics[J]. Transportation Research Part C: Emerging Technologies, 2011, 19 (2): 182-195. [64] OSSEN S, HOOGENDOORN S P. Multi-anticipation and heterogeneity in car-following empirics and a first exploration of their implications[C]. Toronto: 2006 IEEE Intelligent Transportation Systems Conference, 2006. [65] OSSEN S, HOOGENDOORN S P, GORTE B G H. Interdriver differences in car-following: A vehicle trajectory- based study[J]. Transportation Research Record, 2006, 1965 (1): 121-129. [66] KIM I, KIM T, SOHN K. Identifying driver heterogeneity in car-following based on a random coefficient model[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 35-44. [67] CHIABAUT N, LECLERCQ L, BUISSON C. From heterogeneous drivers to macroscopic patterns in congestion[J]. Transportation Research Part B: Methodological, 2010, 44 (2): 299-308. [68] XIE D F, ZHU T L, LI Q. Capturing driving behavior Heterogeneity based on trajectory data[J]. International Journal of Modeling, Simulation, and Scientific Computing, 2020, 11 (3): 20500233. [69] AGHABAYK K, SARVI M, YOUNG W. Attribute selection for modelling driver's car- following behaviour in heterogeneous congested traffic conditions[J]. Transportmetrica A: Transport Science, 2014, 10(5): 457-468. [70] ZHENG L, ZHU C, HE Z, et al. Empirical validation of vehicle type-dependent car-following heterogeneity from micro-and macro-viewpoints[J]. Transportmetrica B: Transport Dynamics, 2019, 7 (1): 765-787. [71] HUANG Y X, JIANG R, ZHANG H M, et al. Experimental study and modeling of car-following behavior under high speed situation[J]. Transportation Research Part C: Emerging Technologies, 2018, 97: 194- 215. [72] VASICEK O. An equilibrium characterization of the term structure[J]. Journal of Financial Economics, 1977, 5(2): 177-188. [73] SAIFUZZAMAN M, ZHENG Z, MAZHARUL H M, et al. Revisiting the task- capability interface model for incorporating human factors into car-following models[J]. Transportation Research Part B: Methodological, 2015, 82: 1-19. [74] KARATZAS I, SHREVE S E. Brownian motion and stochastic calculus[M]. New York: Springer, 1991. [75] 谭金华. 沙尘环境下交通流跟驰模型及仿真[J]. 交通 运输系统工程与信息, 2018, 18(3): 63-67. [TAN J H. Numerical simulation of car- following model in sanddust environment[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 63-67.] [76] 杨龙海, 张春, 仇晓赟, 等. 冰雪条件下中国驾驶员跟 驰行为及模型研究[J]. 交通运输系统工程与信息, 2020, 20(6): 145-155. [YANG L H, ZHANG C, QIU X Y, et al. Car-following behavior and model of chinese drivers under snow and ice conditions[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 145-155.] [77] 关伟, 何蜀燕, 马继辉. 交通流现象与模型评述[J]. 交 通运输系统工程与信息, 2012, 12(3): 90-97. [GUAN W, HE S Y, MA J H. Review on traffic flow phenomena and theory[J]. Journal of Transportation Systems Engineering and Information Technology, 2012, 12(3): 90-97.] [78] ELAMRANI A E Z, MOUSANNIF H, AL M H, et al. The application of machine learning techniques for driving behavior analysis: A conceptual framework and a systematic literature review[J]. Engineering Applications of Artificial Intelligence, 2020, 87: 103312. [79] KHODAYARI A, GHAFFARI A, KAZEMI R, et al. A modified car-following model based on a neural network model of the human driver effects[J]. IEEE Transactions on Systems, Man, and Cybernetics- Part A: Systems and Humans, 2012, 42 (6): 1440-1449. [80] COLOMBARONI C, FUSCO G. Artificial neural network models for car following: Experimental analysis and calibration issues[J]. Journal of Intelligent Transportation Systems, 2014, 18 (1): 5-16. [81] ZHENG J, SUZUKI K, FUJITA M. Car- followingbehavior with instantaneous driver-vehicle reaction delay: A neural-network-based methodology[J]. Transportation Research Part C: Emerging Technologies, 2013, 36: 339-351. [82] 丁点点, 孙磊, 陈松. 机器学习-动力学耦合车辆跟驰 模型[J]. 交通运输系统工程与信息, 2017, 17 (6): 33- 39. [DING D D, SUN L, CHEN S. A car-following model coupling machine learning and dynamic[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(6): 33-39.] [83] WANG H, GU M, WU S, et al. A driver's car-following behavior prediction model based on multi- sensors data [J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020(1): 10. [84] LATTANZI E, FRESCHI V. Machine learning techniques to identify unsafe driving behavior by means of invehicle sensor data[J]. Expert Systems with Applications, 2021, 176: 114818. [85] PAHLAVANI P, POOR A M M, BIGDELI B. Car following prediction based on support vector regression and multi- adaptive regression spline by considering instantaneous reaction time[J]. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2019, 43(1): 67-79. [86] HE Z, ZHENG L, GUAN W. A simple nonparametric carfollowing model driven by field data[J]. Transportation Research Part B: Methodological, 2015, 80: 185-201. [87] PAPATHANASOPOULOU V, ANTONIOU C. Towards data-driven car-following models[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 496- 509. [88] HUANG X, SUN J, SUN J. A car- following model considering asymmetric driving behavior based on long short-term memory neural networks[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 346- 362. [89] COLOMBARONI C, FUSCO G, ISAENKO N. Modeling car following with feed-forward and long-short term memory neural networks[J]. Transportation Research Procedia, 2021, 52: 195-202. [90] ZHOU M, QU X, LI X. A recurrent neural network based microscopic car following model to predict traffic oscillation[J]. Transportation Research Part C: Emerging Technologies, 2017, 84: 245-264. [91] 程静, 张艺. 不同情绪作用下的汽车驾驶行为预测[J]. 交 通 运 输 工 程 与 信 息 学 报, 2019, 17(3): 125- 132. [CHENG J, ZHANG Y. Prediction of driving behavior under different emotions[J]. Journal of Transportation Engineering and Information, 2019, 17(3): 125-132.] [92] XIE D F, FANG Z Z, JIA B, et al. A data- driven lanechanging model based on deep learning[J]. Transportation Research Part C: Emerging Technologies, 2019, 106: 41-60. |
[1] | 刘晓冰, 李奉孝, 田欣妹, 闫学东. 基于通勤模式的都市圈中心结构判别研究[J]. 交通运输系统工程与信息, 2022, 22(2): 17-28. |
[2] | 许奇, 陈越, 黄靖茹, 高顺祥, 张志健. 考虑出行费用的就业可达性分析[J]. 交通运输系统工程与信息, 2022, 22(2): 37-44. |
[3] | 刘春禹, 刘永红, 罗霞, 朱颖. 混合交通流环境下单交叉口自动驾驶车辆轨迹优化[J]. 交通运输系统工程与信息, 2022, 22(2): 154-162. |
[4] | 张小雨, 邵春福, 王博彬, 黄士琛. 新冠疫情影响下居民共享出行方式选择行为研究[J]. 交通运输系统工程与信息, 2022, 22(2): 186-196. |
[5] | 李欣, 戴章, 李怀悦, 胡笳. 基于连续近似模型的轨道交通与常规公交耦合优化设计[J]. 交通运输系统工程与信息, 2022, 22(2): 206-213. |
[6] | 郝妍熙, 刘戎阳, 胡华, 方勇, 刘志钢. 单向通道行人-自行车混合流建模及自组织现象研究[J]. 交通运输系统工程与信息, 2022, 22(2): 223-229. |
[7] | 赵传林, 贺少松, 孙淑敏, 王钰涵. 基于理性疏忽理论的交通疏散网络双层优化模型[J]. 交通运输系统工程与信息, 2022, 22(2): 239-246. |
[8] | 陈小红, 蓝秋雨. 不确定交通需求下交叉口信号配时区间优化模型[J]. 交通运输系统工程与信息, 2022, 22(2): 247-256. |
[9] | 李冰, 王正辉, 马铭炜, 杨鸿宇, 冯悦. 信号交叉口行人二次过街下右转车通行能力与延误估计模型[J]. 交通运输系统工程与信息, 2022, 22(2): 257-267. |
[10] | 朱彤, 秦丹, 董傲然, 杜雨萌, 魏雯. 公交驾驶员违规类型同交通事故间的关联分析[J]. 交通运输系统工程与信息, 2022, 22(2): 322-329. |
[11] | 毛保华, 王敏, 何天健, 陈海波. 城市公共交通服务水平研究回顾和展望[J]. 交通运输系统工程与信息, 2022, 22(1): 2-13. |
[12] | 王子甲, 贾慧慧, 朱亚迪, 陈峰. 基于智能卡数据的轨道与公交复合网络 通勤方式选择行为研究[J]. 交通运输系统工程与信息, 2022, 22(1): 67-73. |
[13] | 贾斌, 朱凌, 李树凯, 刘家林. 城市轨道交通小交路计划与客流控制协同优化策略[J]. 交通运输系统工程与信息, 2022, 22(1): 124-132. |
[14] | 牟振华, 汪寒冰, 林本江, 陈逸群, 金程程, 陈艳艳. 基于演化博弈的违章停车动态罚金策略效用仿真评价[J]. 交通运输系统工程与信息, 2022, 22(1): 152-162. |
[15] | 贾富强, 李引珍, 杨信丰, 马昌喜, 代存杰. 基于演化博弈的政府鼓励条件下共享停车行为分析[J]. 交通运输系统工程与信息, 2022, 22(1): 163-170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||