[1] DURET A, YUAN Y F. Traffic state estimation based on
Eulerian and Lagrangian observations in a mesoscopic
modeling framework[J]. Transportation Research Part B:
Methodological, 2017, 101: 51-71.
[2] XU D W, WEI C C, PENG P, et al. GE-GAN: A novel
deep learning framework for road traffic state estimation
[J]. Transportation Research Part C: Emerging
Technologies, 2020, 117: 102635.
[3] HAN Y, ZHANG M Y, GUO Y Y, et al. A streaming-datadriven method for freeway traffic state estimation using
probe vehicle trajectory data[J]. Physica A: Statistical
Mechanics and its Applications, 2022, 606: 128045.
[4] 成卫, 黄金涛, 陈昱光, 等. 基于浮动车速度波动特征的交通状态识别[J]. 交通运输系统工程与信息, 2023,
23(1): 67-76. [CHENG W, HUANG J T, CHEN Y G,
et al. Traffic state recognition based on speed fluctuation
characteristics of floating car[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2023, 23(1): 67-76.]
[5] 韦伟, 毛保华, 陈绍宽, 等. 基于时空自相关的道路交通状态聚类方法[J]. 交通运输系统工程与信息, 2016,
16(2): 57- 63. [WEI W, MAO B H, CHEN S K, et al.
Urban traffic status clustering method based on
spatiotemporal autocorrelation[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2016, 16(2): 57-63.]
[6] 商强, 林赐云, 杨兆升, 等. 基于谱聚类与RS-KNN的城市快速路交通状态判别[J]. 华南理工大学学报(自然科学版), 2017, 45(6): 52-58. [SHANG Q, LIN C Y, YANG
Z S, et al. Traffic state identification for urban
expressway based on spectral clustering and RS-KNN[J].
Journal of South China University of Technology (Natural
Science Edition), 2017, 45(6): 52-58.]
[7] 陈钊正, 吴聪. 多变量聚类分析的高速公路交通流状态实时评估[J]. 交通运输系统工程与信息, 2018, 18
(3): 225-233. [CHEN Z Z, WU C. A method of traffic
state estimation for expressway based on multivariate
clustering analysis[J]. Journal of Transportation Systems
Engineering and Information Technology, 2018, 18(3):
225-233.]
[8] CHENG Z Y, WANG W, LU J, et al. Classifying the
traffic state of urban expressways: A machine-learning
approach[J]. Transportation Research Part A: Policy and
Practice, 2020, 137: 411-428.
[9] YUAN Y, ZHANG W B, YANG X, et al. Traffic state
classification and prediction based on trajectory data[J].
Journal of Intelligent Transportation Systems, 2021, 25
(5): 1-15.
[10] 杨奎河, 张行, 王晓东. 基于多源数据融合的交通流状态识别研究[J]. 信息通信, 2019(7): 14-15. [YANG K
H, ZHANG X, WANG X D. Research on traffic flow
state recognition based on multi-source data fusion[J].
Information & Communications, 2019(7): 14-15.]
[11] 邬群勇, 胡振华, 张红. 基于多源轨迹数据的城市交通状态精细划分与识别[J]. 交通运输系统工程与信息,
2020, 20(1): 83-90. [WU Q Y, HU Z H, ZHANG H.
Fine division and identification of urban traffic status
based on multi-source trajectory data[J]. Journal of
Transportation Systems Engineering and Information
Technology, 2020, 20(1): 83-90.]
[12] XING J P, WU W, CHENG Q X, et al. Traffic state
estimation of urban road networks by multi-source data
fusion: Review and new insights[J]. Physica A: Statistical
Mechanics and its Applications, 2022, 595: 127079.
|