交通运输系统工程与信息 ›› 2025, Vol. 25 ›› Issue (1): 258-269.DOI: 10.16097/j.cnki.1009-6744.2025.01.025

• 系统工程理论与方法 • 上一篇    下一篇

支持稳定航迹优化的空中交通多元复杂度计算方法

温瑞英*,何家兴,王红勇   

  1. 中国民航大学,空中交通管理学院,天津300300
  • 收稿日期:2024-01-18 修回日期:2024-09-04 接受日期:2024-12-14 出版日期:2025-02-25 发布日期:2025-02-24
  • 作者简介:温瑞英(1977—),女,山西忻州人,副教授,博士。
  • 基金资助:
    天津市应用基础多元投入基金重点项目(21JCZDJC00840);中央高校项目(3122022059)。

Multifaceted Complexity Calculation Method for Air Traffic Supporting Stable Trajectory Optimization

WEN Ruiying*, HE Jiaxing, WANG Hongyong   

  1. College of Air Traffic Management, Civil Aviation University of China, Tianjin 300300, China
  • Received:2024-01-18 Revised:2024-09-04 Accepted:2024-12-14 Online:2025-02-25 Published:2025-02-24
  • Supported by:
    Key Program of Tianjin Science and Technology Plan(21JCZDJC00840);Program for the Central University (3122022059)。

摘要: 传统轨迹优化方法难以在改进局部飞行效率的同时保证整体空域稳定运行,为此本文提出针对空域栅格评估的多元复杂度计算方法,并研究该方法在轨迹搜索算法中的应用。首先,由“接近”“汇聚”两种运动趋势计算交互复杂度,由空域结构和气象环境计算背景复杂度。其次,将两类复杂度分配到空域栅格上,得到栅格的复杂度图。最后,应用于改进的轨迹优化方法中以评估优化结果对空域运行压力的影响。基于仿真空域和实际上海终端区运行数据进行仿真验证。结果表明:空中交通场景的运行压力能够由多元复杂度进行量化。对比原始数据,基于复杂度评估方法改进的A*算法能使优化结果的飞行距离下降20.10%,预计飞行时间下降30.00%,机动次数下降16.67%;同时对比原始数据和传统A*算法的优化轨迹,优化后的局部空域运行压力有所下降。

关键词: 航空运输, 空中交通复杂度, 改进A*算法, 空域, 线性动力系统, 空中交通管理

Abstract: Traditional trajectory optimization methods often encounter challenges in enhancing local flight efficiency while maintaining the overall stability of airspace operations. To address this issue, this paper introduces a multifaceted complexity calculation method specifically designed for airspace grid assessment and explores its application in trajectory search algorithms. Initially, interaction complexity is computed based on two motion tendencies: "approaching" and "converging", while background complexity is derived from airspace structure and meteorological conditions. Subsequently, these complexities are allocated to airspace grids, forming a complexity map of each grid. Finally, this method is integrated to an improved trajectory optimization approach to assess the impact of optimization results on airspace operational pressure. Validation is conducted through simulations in a modeled airspace and actual data from the Shanghai Terminal Area. Simulation results indicate that the operational pressure of air traffic scenarios can be quantified by multifaceted complexity. Compared to the original data, the complexity-assessed improved A* algorithm results in a 20.10% reduction in flight distance, an estimated 30.00% decrease in flight time, and a 16.67% reduction in maneuvers. Furthermore, when comparing with original data and traditional A* algorithm optimized trajectories, the optimized results demonstrate a decrease in local airspace operational pressure.

Key words: air transportation, air traffic complexity, improved A* algorithm, airspace, linear dynamic system, air traffic management

中图分类号: