|   
	[1] 文超, 杨雄, 黄平, 等. 铁路列车运行冲突检测与消解理论研究综述[J]. 中国安全科学学报, 2018, 28(S2): 66-73. [WEN C, YANG X, HUANG P, et al. Review of conflict detection and resolution theory for railway train operation[J]. China Safety Science Journal, 2018, 28(S2): 66-73.] 
 
	[2] CERRETO F, NIELSEN B F, NIELSEN O, et al. Application of data clustering to railway delay pattern recognition[J]. Journal of Advanced Transportation, 2018, 2018: 1-18. 
 
	[3] 胡瑞, 徐传玲, 冯永泰, 等. 广深高速铁路列车分类型晚点预测[J]. 中国安全科学学报, 2019, 29(S2): 181-186. [HU R, XU C L, FENG Y T, et al. Delay prediction of classified trains on Guangzhou-Shenzhen high-speed railway[J]. China Safety Science Journal, 2019, 29(S2): 181-186.] 
 
	[4] HUANG P, SPANNINGER T, CORMAN F. Enhancing the understanding of train delays with delay evolution pattern discovery: A clustering and Bayesian network approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 15367-15381. 
 
	[5] 黄士琛, 邵春福, 李娟, 等. 基于深度学习的车辆轨迹重建与异常轨迹识别[J]. 交通运输系统工程与信息, 2021, 21(3): 47-54. [HUANG S C, SHAO C F, LI J, et al. Vehicle trajectory reconstruction and anomaly trajectory identification based on deep learning[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 47-54.] 
 
	[6] 赵建东, 陈溱, 焦彦利, 等. 重点营运车辆的异常驾驶行为识别研究[J]. 交通运输系统工程与信息, 2022, 22 (1): 282-291. [ZHAO J D, CHEN Q, JIAO Y L, et al. Study on abnormal driving behavior recognition for key commercial vehicle[sJ]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(1): 282-291.] 
 
	[7] 任其亮, 徐韬, 刘媛, 等. 考虑载客状态的改进孤立森林浮动车异常数据检测算法[J]. 交通运输系统工程与信息, 2024, 24(1): 124-131. [REN Q L, XU T, LIU Y, et al. Improved isolation forest algorithm for abnormal floating car data detection considering passenger-carrying status[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(1): 124-131.] 
 
	[8] LI A L, HELLER B R J, PURANIK C R, et al. Anomaly detection via a gaussian mixture model for flight operation and safety monitoring[J]. Transportation Research Part C: Emerging Technologies, 2016, 64: 45-57. 
 
	[9] YANG J, LIU Y, MA L, et al. Maritime traffic flow clustering analysis by density based trajectory clustering with noise[J]. Ocean Engineering, 2022, 249: 111001. 
 
	[10] 王婉琦, 程国柱, 徐亮. 基于无监督聚类分析的激进换道行为识别方法[J]. 交通运输系统工程与信息, 2024, 24(2): 166-178. [WANG W Q, CHENG G Z, XU L. Aggressive lane-changing behavior recognition based on unsupervised clustering analysis[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24(2): 166-178.] 
 
	[11] SHEN P J, SONG L Y, WANG B. Dynamic clustering and anomaly detection of train delays in stream data: An incremental Dirichlet process approach[J/OL]. IEEE Transactions on Intelligent Transportation Systems, (2025-05-26) [2025-06-02]. https://doi.org/10.1109/TITS.2025.3566042. 
 
	[12] TONG J Y, TORENVILET N. Temporally-reweighted dirichlet process mixture anomaly detector[C]//2020 International Conference on Data Mining Workshops (ICDMW), IEEE, 2020: 267-274. 
 
	[13] ZHAO W, LI L, ALAM S, et al. An incremental clustering method for anomaly detection in flight data[J]. Transportation Research Part C: Emerging Technologies, 2021, 132: 103406. 
 
	[14] LUO J, PENG Q, WEN C, et al. Data-driven decision support for rail traffic control: A predictive approach[J]. Expert Systems with Applications, 2022, 207: 118050.
  |