交通运输系统工程与信息 ›› 2013, Vol. 13 ›› Issue (6): 60-66.

• 决策论坛 • 上一篇    下一篇

基于GM(1,1|τ,r)模型的城市道路短时交通流预测

郭欢1,肖新平*1,Jeffrey Forrest2   

  1. 1.武汉理工大学 理学院,武汉430063; 2. 宾州州立SR大学 数学系,PA 16057, USA
  • 收稿日期:2013-02-06 修回日期:2013-07-30 出版日期:2013-12-24 发布日期:2014-01-14
  • 作者简介:郭欢(1984-),女,湖北襄阳人,博士生.
  • 基金资助:

    国家自然科学基金(70971103);教育部人文社科基金(11YJC630155);教育部高等学校博士学科专项科研基金(20120143110001);武汉理工大学国际交流预研项目

Urban Road Short-term Traffic Flow Forecasting Based on the Delay and Nonlinear Grey Model

GUO Huan1,XIAO Xin-ping1,Jeffrey Forrest2   

  1. 1. School of Science, Wuhan University of Technology, Wuhan 430063, China;2. Mathematics Department, Slippery Rock University, PA 16057, USA
  • Received:2013-02-06 Revised:2013-07-30 Online:2013-12-24 Published:2014-01-14

摘要:

充分考虑城市道路交通系统中交通流存在的延迟性和非线性,本文基于灰色GM(1,1|τ, γ )模型对城市道路短时交通流进行建模预测.首先,通过建立城市交通路段上交通流量大于通行能力时的速度-流量关系,得到交通系统延迟时间τ的计算模型.再针对交通流存在的非线性特征,以模型的预测效果最优为目标,建立关于非线性因子的优化模型并利用粒子群算法寻找最佳的非线性参数γ .最后对武汉市友谊大道某一路段进行交通实验,将灰色GM(1,1|τ , γ )模型的预测结果与灰色GM(1,1)模型和支持向量机进行比较.结果表明, GM(1,1|τ , γ )模型的预测精度有明显的提高,能为智能交通系统的管理和控制提供及时可靠的信息资源.

关键词: 城市交通, GM(1,1, τ, &gamma, )模型;短时交通流预测;速度-流量模型;延迟时间;非线性因子

Abstract:

Concerning the delay and nonlinear properties of traffic flow in urban road systems, this paper forecasts the short-term traffic flow based on the grey model. Firstly, the delay factor is determined by the speed-flow relationship when volume is greater than it capacity. Then, the nonlinear parameter is determined by a particle swarm optimization algorithm, where the prediction effect is unsurpassed. Finally, verification of this model is done by collecting traffic flow data on one section of Youyi Avenue and comparing the prediction value of with and SVM. The results show that the prediction effect of model for short-term traffic flow is significantly improved, which plays an important role in intelligent traffic systems.

Key words: urban traffic, GM(1,1, τ, &gamma, )model;short-term traffic flow forecasting, speed-flow model;delay time;nonlinear

中图分类号: