交通运输系统工程与信息 ›› 2014, Vol. 14 ›› Issue (3): 97-103.

• 系统工程理论与方法 • 上一篇    下一篇

基于蚁群算法的动态路径选择优化方法

安毅生*,袁绍欣,赵祥模,岳 云   

  1. 长安大学 信息工程学院,西安 710064
  • 收稿日期:2013-08-27 修回日期:2014-03-01 出版日期:2014-06-25 发布日期:2014-07-10
  • 作者简介:安毅生(1972-),男,陕西西安人,教授,博士后.
  • 基金资助:

    国家自然科学基金(50978030,51278058);长江学者和创新团队发展计划(IRT0951);中国博士后科学基金 (2012M521729);陕西省自然科学基础研究计划项目(2014JZ019).

Optimization of Dynamic Route Choice Based on Ant Colony Algorithm

AN Yi-sheng,YUAN Shao-xin,ZHAO Xiang-mo,YUE Yun   

  1. School of Information Engineering, Chang’an University, Xi’an 710064, China
  • Received:2013-08-27 Revised:2014-03-01 Online:2014-06-25 Published:2014-07-10

摘要:

为了确保城市路网交通流平稳运行和各路段交通流量合理分配,提出了一种基 于伪随机状态转移规则的动态路径选择优化方法.该方法首先计算路段上流量和路阻,利 用伪随机状态转移规则和路径、路段信息素更新规则,模拟了出行者在路网节点的择路 行为,实现了路径选择过程中静态先验知识、动态交通状态及路径选择随机性的综合.算 例结果表明,该方法能够体现不同 OD 需求下路径选择的叠加效果和时延效果,相对于 平衡分配法可获得更好的路网交通均衡性,对于时变路况环境下的路径诱导系统也具有 一定的应用价值.

关键词: 智能交通, 动态路径选择, 蚁群算法, 交通网络, 转移概率

Abstract:

To ensure the stable operation of urban traffic flow and the rational traffic flow assignment for each road section, this study develops a pseudo-random state transition rules based on dynamic route choice optimization method. The traffic flow and impedance on each road section are calculated, and then the indi- vidual traveler’s route choice behaviors on network nodes are simulated by applying the pseudo- random state transition rules, route and section pheromone update rules. It implements the synthesizing of static prior knowledge, dynamic traffic state and the randomness of route choice. Test example shows that the method is capable of reflecting the overlay and delay effect of route choice under different OD demands. In addition, this method can obtain better network equilibrium compared with the equilibrium assignment method, which will also benefit for achieving the route guidance system with time-varying traffic conditions.

Key words: intelligent transportation, dynamic route choice, ant colony algorithm, traffic network, transi- tion probability

中图分类号: