[1] HIDAS P. Modelling vehicle interactions in microscopic simulation of merging and weaving[J]. Transportation Research Part C:Emerging Technologies, 2005, 13(1): 37-62.
[2] RICKERT M, NAGEL K, SCHRECKENBERG M, et al. Two lane traffic simulations using cellular automata[J]. Physica A,1996, 231(4): 534-550.
[3] PEDERSEN M M, RUHOFF P T. Entry ramps in the Nagel- Schreckenberg model[J]. Physical Review E, 2002, 65(5): 705-714.
[4] DAOUDIA A K, MOUSSA N. Numerical simulations of a three- lane traffic model using cellular automata[J]. Chinese Journal of Physics, 2003, 41(6): 671-681.
[5] 敬明, 邓卫, 王昊, 等. 基于跟车行为的双车道交通流元胞自动机模型[J]. 物理学报, 2012, 61(24): 331- 339. [JING M, DENG W, WANG H, et al. Two- lane cellular automaton traffic model based on car following behavior[J]. Acta Physica Sinica, 2012, 61(24): 331- 339.]
[6] 邓建华, 冯焕焕. 基于换道决策机理的多车道元胞自动机模型[J]. 交通运输系统工程与信息, 2018, 18(3): 68- 73. [DENG J H, FENG H H. Multilane cellular automaton model based on the lane-changing mechanism[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 68-73.]
[7] ZHENG L, ISMAIL K, MENG X H. Traffic conflict techniques for road safety analysis: open questions and some insights[J]. Canadian Journal of Civil Engineering, 2014, 41(7): 633-641.
[8] DAGANZO C F. A behavioral theory of multi- lane traffic flow. Part I: Long homogeneous freeway sections [J]. Transportation Research Part B, 1999, 36(2): 131- 158.
[9] PRODINGER H. On the analysis of an algorithm to generate a random cyclic permutation[J]. Ars Combinatoria, 2002(65): 75-78. |