交通运输系统工程与信息 ›› 2019, Vol. 19 ›› Issue (5): 236-241.

• 案例分析 • 上一篇    下一篇

基于公交GPS 和IC 卡数据的乘客人均候车时间估算方法研究

张晓春1, 2,高永*1, 2,于壮1, 2,王玉焕1, 2,安健1, 2   

  1. 1. 深圳市城市交通规划设计研究中心有限公司,广东深圳 518026; 2. 深圳市交通信息与交通工程重点实验室,广东深圳 518026
  • 收稿日期:2019-04-10 修回日期:2019-06-02 出版日期:2019-10-25 发布日期:2019-10-25
  • 作者简介:张晓春(1973-),男,安徽阜阳人,教授级高级工程师.
  • 基金资助:

    国家自然科学基金青年科学基金/ Young Scientists Fund of the National Natural Science Foundation of China (71501014);广东省交通运输厅2016—2017 年度政府引导性课题/ Government Guiding Project of Guangdong Transportation Department in 2016-2017(科技-2016-03-023).

Passenger Average Waiting Time Estimation Based on Bus GPS and IC Card Data

ZHANG Xiao-chun1, 2, GAO Yong1, 2, YU Zhuang1, 2,WANG Yu-huan1, 2, AN Jian1, 2   

  1. 1. Shenzhen Urban Transport Planning Center CO., LTD, Shenzhen 518026, Guangdong, China; 2. Shenzhen's Key Laboratory of Traffic Information and Traffic Engineering, Shenzhen 518026, Guangdong, China
  • Received:2019-04-10 Revised:2019-06-02 Online:2019-10-25 Published:2019-10-25

摘要:

候车是公交出行的重要组成部分,而候车时间是决定公交系统吸引力的关键因素,也是评价城市公交服务水平的指标之一. 目前,获取乘客候车时间的主要途径为问卷调查法和视频采集法. 但是这些方法费时费力,仅能实现小范围典型站点的候车时间的调查,无法快速完成线路甚至线网级别的候车时间采集. 为解决上述问题,本文基于北京公交GPS和IC 卡刷卡数据,采用非时齐泊松过程理论构建了乘客到站模型,并给出了一种离散条件下任意时刻的乘客人均候车时间计算方法,该方法能动态准确的获知不同站点、线路和线网乘客的人均候车时间. 基于此方法本文计算了1 d 内北京公交606 路全线的人均候车时间变化情况,计算结果表明,606 路早晚高峰和中午乘客人均候车时间最短大约在200 s 左右,下午乘客的候车时间较长.

关键词: 城市交通, 乘客候车时间, 非时齐泊松分布, 公交数据挖掘

Abstract:

Passenger waiting bus is an important part of public transport, and passengers' waiting time has crucial effect on transport system attraction. At present, passenger questionnaire and vedio survey are two main approachs to obtain passengers' waiting time. However, these methods are time consuming and not able to reflect time-space character of passengers' waiting time in a dynamic way. Furthermore, it is difficult to evaluate the level of service of public transport. Aiming at forementioned problem, this paper based on the bus GPS data and IC card data of Beijing employed non-homogeneous poisson process to compute the passengers' waiting time. This method could dynamically compute the passenger average waiting time of different stations, lines and the bus network. Based on this method, the Beijing No. 606 passenger waiting time of one day was computed, and its result indicated that during the morning and evening peak period, passenger had the minimum waiting time, about 200 s, and the waiting time of passenger was relative long in the afternoon.

Key words: urban traffic, passengers' waiting time, non-homogeneous poisson process, mining of bus operation data

中图分类号: