[1] 彭明, 杨雪峰, 应江婷, 等. 疲劳驾驶警示系统在公交车的应用探讨[J]. 公路交通科技(应用技术版), 2011, 7(6): 291- 293. [PENG M, YANG X F, YING J T, et al. Discussion on the application of fatigue driving warning system in bus[J]. Highway Traffic Technology (Applied Technology Edition), 2011, 7(6): 291-293.]
[2] 李都厚, 刘群, 袁伟, 等. 疲劳驾驶与交通事故关系[J]. 交通运输工程学报, 2010, 10(2): 104-109. [LI D H, LIU Q, YUAN W, et al. Relationship between fatigue driving and traffic accident[J]. Journal of Transportation Engineering, 2010, 10(2): 104-109.]
[3] 游俊. 驾驶员疲劳驾驶检测系统研究[D]. 哈尔滨:哈尔 滨 工 程 大 学, 2016. [YOU J. Research on driver fatigue driving detection system[D]. Harbin:Harbin Engineering University, 2016.]
[4] 王斐, 吴仕超, 刘少林, 等. 基于脑电信号深度迁移学习的驾驶疲劳检测[J]. 电子与信息学报, 2019, 41(9): 2264-2272. [WANG F, WU S C, LIU S L, et al. Driver fatigue detection through deep transfer learning in an electroencephalogram- based system[J]. Journal of Electronics and Information Technology, 2019, 41(9): 2264-2272.]
[5] JEONG I C, LEE D H, PARK S W, et al. Automobile driver's stress index provision system that utilizes electrocardiogram[C]. 2007 Ieee Intelligent Vehicles Symposium, Istanbul, 2007: 652-656.
[6] 牛清宁, 周志强, 金立生, 等. 基于眼动特征的疲劳驾驶检测方法[J]. 哈尔滨工程大学学报, 2015, 36(3): 394- 398. [NIU Q N, ZHOU Z Q, JIN L S, et al. Detection of driver fatigue based on eye movements[J]. Journal of Harbin Engineering University, 2015, 36(3): 394-398.]
[7] 沙春发, 李瑞, 张明明. 基于方向盘握力的疲劳驾驶检测研究[J]. 科学技术与工程, 2016, 16(30): 299-304. [SHA C F, LI R, ZHANG M M. Detecting fatigue driving based on steering wheel grip force[J]. Science Technology and Engineering, 2016, 16(30): 299-304.]
[8] 李作进, 李仁杰, 李升波, 等. 基于方向盘转角近似熵与复杂度的驾驶人疲劳状态识别[J]. 汽车安全与节能学报, 2016, 7(3): 279-284. [LI Z J, LI R J, LI S B, et al. Driver fatigue recognition based on approximated entropy and complexity of steering wheel angle[J]. Journal of Automotive Safety and Energy, 2016, 7(3): 279-284.]
[9] 薛春杰. 驾驶员疲劳驾驶的生理信号研究[J]. 纳税, 2017(17): 197. [XUE C J. Research on physiological signal of driver fatigue driving[J]. Ratepaying,2017 (17): 197.]
[10] 柳龙飞, 伍世虔, 徐望明. 基于人脸特征点分析的疲劳驾驶实时检测方法[J]. 电视技术, 2018(12): 27-30. [LIU L F, WU S Q, XU W M. Real-time fatigue driving detection based on analysis of facial landmarks[J]. TV Technology, 2018(12): 27-30.]
[11] 万蔚, 王振华, 王保菊. 基于驾驶行为的疲劳驾驶判别算 法 研 究 [J]. 道 路 交 通 与 安 全, 2016(6): 21- 24. [WANG W, WANG Z H, WANG B J. Research on detection of fatigue driving based on driving behaviors [J]. Road Traffic and Safety, 2016(6): 21-24.]
[12] 陈志勇, 杨佩, 彭力, 等. 基于BP神经网络的驾驶员疲劳监测研究[J]. 计算机科学, 2015 (s1): 67-69, 93. [CHEN Z Y, YANG P, PENG L, et al. Fatigue driving monitoring based on BP neural network[J]. Journal of Computer Science, 2015 (s1): 67-69, 93.]
[13] 毛喆, 严新平, 吴超仲, 等. 疲劳驾驶时的车速变化特征[J]. 北京工业大学学报, 2011, 37(8): 1175-1183. [MAO J, YAN X P, WU C Z, et al. Analysis of velocity changing rules under driving fatigue[J]. Journal of Beijing University of Technology, 2011, 37(8): 1175- 1183.]
[14] 徐维超. 相关系数研究综述[J]. 广东工业大学学报, 2012, 29(3): 12-17. [XU W C. A review on correlation coefficients[J]. Journal of Guangdong University of Technology, 2012, 29(3): 12-17.]
[15] CUTLER A, CUTLER D R, STEVENS J R. Random forests[M]. Ensemble Machine Learning. Springer, Boston, MA, 2012: 157-175.
[16] 杜续, 冯景瑜, 吕少卿, 等. 基于随机森林回归分析的 PM2.5 浓 度 预 测 模 型 [J]. 电 信 科 学, 2017(7): 20172111-201721110. [DU X, FENG J Y, LV S Q, et al. PM2.5 concentration prediction model based on random forest regression analysis[J]. Telecom Science, 2017(7): 20172111-201721110.]
[17] 毛树华, 王先朋, 文江辉, 等. 基于自回归条件持续期模型的疲劳驾驶研究[J]. 交通运输系统工程与信息, 2018, 18(3): 85- 91, 111. [MAO S H, WANG X P, WEN J H, et al. Fatigue driving detection based on autoregressive conditional duration model[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 85-91, 111.]
[18] LIUZ K, HWARD D. Bondell. Binormal precision-recall curves for optimal classification of imbalanced data[J]. Statistics in Biosciences, 2019, 11 (1): 141-161
[19] RAND W M. Objective criteria for the evaluation of clustering methods[J]. Journal of the American Statistical Association, 1971, 66(336): 846-850. |