[1] YUE Y, LAN T, YEH A G O, et al. Zooming into individuals to understand the collective: A review of trajectory- based travel behaviour studies[J]. Travel Behaviour and Society, 2014, 1(2): 69-78.
[2] GONG H, CHEN C, BIALOSTOZKY E, et al. A GPS/ GIS method for travel mode detection in New York city [J].Computers, Environment and Urban Systems, 2012, 36(2): 131-139.
[3] XIAO G, JUAN Z, ZHANG C. Travel mode detection based on GPS track data and bayesian networks[J]. Computers, Environment and Urban Systems, 2015, 54: 14-22.
[4] STENNETH L, WOLFSON O, YU P S, et al. Proceedings of the ACM international symposium on advances in geographic information systems: Transportation mode detection using mobile phones and GIS information[C]. New York, USA: Association for Computing Machinery, 2011.
[5] ZHENG Y, LIU L, WANG L, et al. Proceeding of the 17th international conference on world wide web: Learning transportation mode from raw GPS data for geographic applications on the web[C]. New York, USA: Association for Computing Machinery, 2008.
[6] YANG F, YAO Z, CHENG Y, et al. Multimode trip information detection using personal trajectory data[J]. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 2016, 20(5): 449-460.
[7] YANG F, YAO Z, JIN P J. GPS and acceleration data in multimode trip data recognition based on wavelet transform modulus maximum algorithm[J]. Transportation Research Record, 2015, 2526: 90-98.
[8] REDDY S, MUN M, BURKE J, et al. Using mobile phones to determine transportation modes[J]. ACM Transactions on Sensor Networks, 2010, 6(2): 1-27.
[9] JAHANGIRI A, RAKHA H A. Applying machine learning techniques to transportation mode recognition using mobile phone sensor data[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2406-2417.
[10] ASHQAR H I, ALMANNAA M H, ELHENAWY M, et al. Smartphone transportation mode recognition using a hierarchical machine learning classifier and pooled features from time and frequency domains[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 244-252.
[11] 袁玉萍, 胡亮, 周志坚. 基于遗传算法对支持向量机模型中参数优化[J]. 计算机工程与设计, 2008(19): 136- 138. [YUAN Y P, HU L, ZHOU Z J. Optimizing parameters of support vector machine's model based on genetic algorithm[J]. Computer Engineering and Design, 2008(19): 136-138.] |